12 research outputs found

    Core and valence level photoelectron spectroscopy of nanosolvated KCl

    No full text
    Abstract The solvation of alkali and halide ions in the aqueous environment has been a subject of intense experimental and theoretical research with multidisciplinary interests; yet, a comprehensive molecular-level understanding has still not been obtained. In recent years, electron spectroscopy has been increasingly applied to study the electronic and structural properties of aqueous ions with implications, especially in atmospheric chemistry. In this work, we report core and valence level (Cl 2p, Cl 3p, and K 3p) photoelectron spectra of the common alkali halide, KCl, doped in gas-phase water clusters in the size range of a few hundred water molecules. The results indicate that the electronic structure of these nanosolutions shows a distinct character from that observed at the liquid–vapor interface in liquid microjets and ambient pressure setups. Insights are provided into the unique solvation properties of ions in a nanoaqueous environment, emerging properties of bulk electrolyte solutions with growing cluster size, and sensitivity of the electronic structure to varying solvation configurations

    A localized view on molecular dissociation via electron-ion partial covariance

    No full text
    Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of chiral (R/S)-1-iodo-2-methylbutane, probed by XUV pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we introduce electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2_{3/2} and 4d5/2_{5/2} atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site. We thus pave the way for approaching femto-stereochemistry with FELs

    Facing the challenge of mammalian neural microcircuits: taking a few breaths may help

    No full text

    Which Methodological Practice(s) for Psychotherapy Science? A Systematic Review and a Proposal

    No full text
    corecore