26 research outputs found

    Feature Partitioning for Robust Tree Ensembles and their Certification in Adversarial Scenarios

    Get PDF
    Machine learning algorithms, however effective, are known to be vulnerable in adversarial scenarios where a malicious user may inject manipulated instances. In this work we focus on evasion attacks, where a model is trained in a safe environment and exposed to attacks at test time. The attacker aims at finding a minimal perturbation of a test instance that changes the model outcome. We propose a model-agnostic strategy that builds a robust ensemble by training its basic models on feature-based partitions of the given dataset. Our algorithm guarantees that the majority of the models in the ensemble cannot be affected by the attacker. We experimented the proposed strategy on decision tree ensembles, and we also propose an approximate certification method for tree ensembles that efficiently assess the minimal accuracy of a forest on a given dataset avoiding the costly computation of evasion attacks. Experimental evaluation on publicly available datasets shows that proposed strategy outperforms state-of-the-art adversarial learning algorithms against evasion attacks

    Feature partitioning for robust tree ensembles and their certification in adversarial scenarios

    Get PDF
    Machine learning algorithms, however effective, are known to be vulnerable in adversarial scenarios where a malicious user may inject manipulated instances. In this work, we focus on evasion attacks, where a model is trained in a safe environment and exposed to attacks at inference time. The attacker aims at finding a perturbation of an instance that changes the model outcome.We propose a model-agnostic strategy that builds a robust ensemble by training its basic models on feature-based partitions of the given dataset. Our algorithm guarantees that the majority of the models in the ensemble cannot be affected by the attacker. We apply the proposed strategy to decision tree ensembles, and we also propose an approximate certification method for tree ensembles that efficiently provides a lower bound of the accuracy of a forest in the presence of attacks on a given dataset avoiding the costly computation of evasion attacks.Experimental evaluation on publicly available datasets shows that the proposed feature partitioning strategy provides a significant accuracy improvement with respect to competitor algorithms and that the proposed certification method allows ones to accurately estimate the effectiveness of a classifier where the brute-force approach would be unfeasible

    Signatures of Associative Memory Behavior in a Multimode Dicke Model

    Get PDF
    © 2020 American Physical Society. Dicke-like models can describe a variety of physical systems, such as atoms in a cavity or vibrating ion chains. In equilibrium these systems often feature a radical change in their behavior when switching from weak to strong spin-boson interaction. This usually manifests in a transition from a "dark"to a "superradiant"phase. However, understanding the out-of-equilibrium physics of these models is extremely challenging, and even more so for strong spin-boson coupling. Here we show that the nonequilibrium strongly interacting multimode Dicke model can mimic some fundamental properties of an associative memory - a system which permits the recognition of patterns, such as letters of an alphabet. Patterns are encoded in the couplings between spins and bosons, and we discuss the dynamics of the spins from the perspective of pattern retrieval in associative memory models. We identify two phases, a "paramagnetic"and a "ferromagnetic"one, and a crossover behavior between these regimes. The "ferromagnetic"phase is reminiscent of pattern retrieval. We highlight similarities and differences with the thermal dynamics of a Hopfield associative memory and show that indeed elements of "machine learning behavior"emerge in the strongly coupled multimode Dicke model

    Dynamics of strongly coupled disordered dissipative spin-boson systems

    Get PDF
    Spin-boson Hamiltonians are an effective description for numerous quantum few-and many-body systems such as atoms coupled to cavity modes, quantum electrodynamics in circuits and trapped ion systems. While reaching the limit of strong coupling is possible in current experiments, the understanding of the physics in this parameter regime remains a challenge, especially when disorder and dissipation are taken into account. Here we investigate a regime where the spin dynamics can be related to a Ising energy function defined in terms of the spin-boson couplings. While in the coherent weak coupling regime it is known that an effective description in terms of spin Hamiltonian is possible, we show that a similar viewpoint can be adopted in the presence of dissipation and strong couplings. The resulting dynamics features approximately thermal regimes, separated by out-of-equilibrium ones in which detailed balance is broken. Moreover, we show that under appropriately chosen conditions one can even achieve cooling of the spin degrees of freedom. This points towards the possibility of using strongly coupled dissipative spin-boson systems for engineering complex energy landscapes together with an appropriate cooling dynamics

    Strong zero modes in a class of generalized Ising spin ladders with plaquette interactions

    Get PDF
    © 2019 American Physical Society. We study a class of spin-1/2 quantum ladder models with generalized plaquette interactions in the presence of a transverse field. We show that in certain parameter regimes, these models have strong zero modes responsible for the long relaxation times of edge spins. By exploiting an infinite set of symmetries in these systems, we show how their Hamiltonians can be represented, in each symmetry sector, by a transverse field Ising chain. Due to the presence of an extensive number of conserved quantities, even if the original system has no disorder, most of these symmetry sectors feature a quasirandom transverse field profile. This representation of the ladder system in terms of a disordered Ising chain allows us to explain the features of the edge autocorrelation function of the original system. Furthermore, we find what appears to be an interesting mechanism for slow decorrelation: Even in parameter regimes where the full ladder model does not possess an obvious strong zero mode, some of the initial information stored in the edge spins can be preserved for long times as a consequence of the existence of strong zero modes within individual symmetry sectors

    The ASTRI SST-2M prototype for the Cherenkov Telescope Array: status after the commissioning phase of the telescope

    Get PDF
    ASTRI SST-2M is an imaging atmospheric Cherenkov telescope developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA) project as an end-to-end prototype for the Small Size array. Large-, medium-, and small-sized telescopes will compose the CTA observatory that represents the next generation of imaging atmospheric Cherenkov telescopes and will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope has been installed at the INAF-Catania observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. In these 3 years of open-air operations the telescope has been commissioned and its opto-mechanical performance is now well understood. The apparatus was made ready to host its main scientific instrument, the camera with Silicon-Photomultiplier based detectors. This contribution is a status report on the complete ASTRI SST-2M telescope assembly including the electro-mechanical structure and the optical system

    The ASTRI SST-2M prototype for the Cherenkov Telescope Array: opto-mechanical performance

    Get PDF
    ASTRI SST-2M is an end-to-end telescope prototype developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA). The CTA observatory, with a combination of large-, medium-, and small-sized telescopes (LST, MST and SST, respectively), will represent the next generation of imaging atmospheric Cherenkov telescopes. It will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope structure and mirrors have been installed at the INAF observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. Its performance verification phase began in autumn 2015. Part of the scheduled activities foresees the study and characterization of the optical and opto-mechanical performance of the telescope prototype. In this contribution we report the results achieved in terms of kinematic model analysis, mirrors reflectivity evolution, telescopes positioning, flexures and pointing model and the thermal behavior

    DE-PASS Best Evidence Statement (BESt): modifiable determinants of physical activity and sedentary behaviour in children and adolescents aged 5–19 years–a protocol for systematic review and meta-analysis

    Get PDF
    Introduction Physical activity among children and adolescents remains insufficient, despite the substantial efforts made by researchers and policymakers. Identifying and furthering our understanding of potential modifiable determinants of physical activity behaviour (PAB) and sedentary behaviour (SB) is crucial for the development of interventions that promote a shift from SB to PAB. The current protocol details the process through which a series of systematic literature reviews and meta-analyses (MAs) will be conducted to produce a best-evidence statement (BESt) and inform policymakers. The overall aim is to identify modifiable determinants that are associated with changes in PAB and SB in children and adolescents (aged 5–19 years) and to quantify their effect on, or association with, PAB/SB. Methods and analysis A search will be performed in MEDLINE, SportDiscus, Web of Science, PsychINFO and Cochrane Central Register of Controlled Trials. Randomised controlled trials (RCTs) and controlled trials (CTs) that investigate the effect of interventions on PAB/SB and longitudinal studies that investigate the associations between modifiable determinants and PAB/SB at multiple time points will be sought. Risk of bias assessments will be performed using adapted versions of Cochrane’s RoB V.2.0 and ROBINS-I tools for RCTs and CTs, respectively, and an adapted version of the National Institute of Health’s tool for longitudinal studies. Data will be synthesised narratively and, where possible, MAs will be performed using frequentist and Bayesian statistics. Modifiable determinants will be discussed considering the settings in which they were investigated and the PAB/SB measurement methods used. Ethics and dissemination No ethical approval is needed as no primary data will be collected. The findings will be disseminated in peer-reviewed publications and academic conferences where possible. The BESt will also be shared with policy makers within the DE-PASS consortium in the first instance

    DE-PASS Best Evidence Statement (BESt):modifiable determinants of physical activity and sedentary behaviour in children and adolescents aged 5–19 years–a protocol for systematic review and meta-analysis

    Get PDF
    Introduction: Physical activity among children and adolescents remains insufficient, despite the substantial efforts made by researchers and policymakers. Identifying and furthering our understanding of potential modifiable determinants of physical activity behaviour (PAB) and sedentary behaviour (SB) is crucial for the development of interventions that promote a shift from SB to PAB. The current protocol details the process through which a series of systematic literature reviews (SLRs) and meta-analyses (MAs) will be conducted to produce a best-evidence statement (BESt) and inform policy makers. The overall aim is to identify modifiable determinants that are associated with changes in PAB and SB in children and adolescents (aged 5-19 years) and to quantify their effect on, or association with, PAB/SB. Methods and analysis: A search will be performed in MEDLINE, SportDiscus, Web of Science, PsychINFO and Cochrane Central Register of Controlled Trials. Randomized controlled trials (RCTs) and controlled trials (CTs) that investigate the effect of interventions on PAB/SB and longitudinal studies that investigate the associations between modifiable determinants and PAB/SB at multiple time points will be sought. Risk of bias assessments will be performed using adapted versions of Cochrane’s RoB 2.0 and ROBINS-I tools for RCTs and CTs, respectively, and an adapted version of the National Institute of Health’s tool for longitudinal studies. Data will be synthesised narratively and, where possible, MAs will be performed using frequentist and Bayesian statistics. Modifiable determinants will be discussed considering the settings in which they were investigated and the PAB/SB measurement methods used. Ethics and dissemination: No ethical approval is needed as no primary data will be collected. The findings will be disseminated in peer-reviewed publications and academic conferences where possible. The BESt will also be shared with policy makers within the DE-PASS consortium in the first instance. Systematic review registration: CRD4202128287
    corecore