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Spin-boson Hamiltonians are an effective description for numerous quantum few- and many-body systems,
such as atoms coupled to cavity modes, quantum electrodynamics in circuits, and trapped ion systems. While
reaching the limit of strong coupling is possible in current experiments, the understanding of the physics in this
parameter regime remains a challenge, especially when disorder and dissipation are taken into account. Here
we investigate a regime where the spin dynamics can be related to an Ising energy function defined in terms of
the spin-boson couplings. While in the coherent weak coupling regime it is known that an effective description
in terms of spin Hamiltonian is possible, we show that a similar viewpoint can be adopted in the presence of
dissipation and strong couplings. The resulting dynamics features approximately thermal regimes, separated by
out-of-equilibrium ones in which detailed balance is broken. Moreover, we show that under appropriately chosen
conditions one can even achieve cooling of the spin degrees of freedom. This points toward the possibility of
using strongly coupled dissipative spin-boson systems for engineering complex energy landscapes together with

an appropriate cooling dynamics.

DOI: 10.1103/PhysRevResearch.2.013198

I. INTRODUCTION

Prominent platforms for quantum simulation, such as cav-
ity, circuit [1], or waveguide quantum electrodynamics [2]
as well as trapped ions [3,4] can be modeled by ensembles
of two-level systems interacting via bosonic degrees of free-
dom (electromagnetic modes or phonons). While the weak
coupling regime is relatively well understood and can be
treated by a perturbative integration of the bosonic degrees of
freedom, the strong coupling limit is far more challenging [5].

An additional layer of complexity is added by the presence
of disorder, i.e., when individual spins couple to the bosonic
“environment” at different strengths. Such a setting is relevant
for at least two reasons. First, some degree of quenched
disorder may always be present in realistic systems and,
second, one may engineer nonuniform couplings for practical
applications: Systems with tunable quasirandom couplings
often form the basis for a physical implementation of complex
optimization problems, which may for instance be solved via
quantum annealing protocols [6,7].

Disordered spin-boson systems have only recently moved
into the focus of theoretical investigations. References [8,9]
explore the emergence of glassiness when many electro-
magnetic modes interact with an ensemble of qubits. In
Refs. [10,11], instead, spin-glass techniques are employed to
show that the same system effectively realizes an associative
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memory. Most of these techniques, however, cannot be
straightforwardly generalized to study open quantum dynam-
ics in the strong coupling regime, and only a few studies deal
with disordered open quantum systems [12—15]. This topic
acquires further relevance in the light of recent experimental
progress in multimodal cavity QED, which realize tunable
range [16] and sign-changing [17] photon-mediated atomic
interactions.

In this work we investigate a disordered and dissipative
system in which weakly driven spins are strongly coupled
to a bosonic mode [see Fig. 1(a)]. We employ a perturbative
approach which relies on the weakness of the driving rather
than of the spin-boson coupling. We find that the effective
spin dynamics is governed by a rate equation that depends
on a fully connected Ising energy function as sketched in
Fig. 1(b). Depending on the rates of bosonic loss and gain
we identify several distinct dynamical regimes: Two of them
are high-temperature ones, in which the stationary state of
the system is fully mixed. A further one mimics an effective
low-temperature dynamics, which permits cooling of the spin
system. Outside these the dynamics is generally nonthermal
and detailed balance is broken. This link between an open,
strongly coupled spin-boson system and the physics of disor-
dered Ising spin systems opens up the possibility of engineer-
ing complex classical energy landscapes—with importance
in the context of optimization problems [18] or associative
memories [19]—together with a cooling protocol.

II. MODEL

We consider an ensemble of N two-level systems interact-
ing with a single bosonic mode described by the following

Published by the American Physical Society


https://core.ac.uk/display/288429586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013198&domain=pdf&date_stamp=2020-02-24
https://doi.org/10.1103/PhysRevResearch.2.013198
https://creativecommons.org/licenses/by/4.0/

ELIANA FIORELLI et al.

PHYSICAL REVIEW RESEARCH 2, 013198 (2020)

(a)

spin dependent coupling
groi(al + a)

gain, K common bosonic mode, &'
—_— g
—=
loss,y
fully-connected A energy function
(b) Ising model . gyl
9193 E(d) = -4 D999

i#j
Co,
04
87)
&

average energy

FIG. 1. Dissipative spin-boson system. (a) N weakly driven (at
strength ) two-level systems (spins) are strongly coupled to a single
bosonic mode with couplings g, (k =1, ..., N). Gain and loss of
the bosons occur at rates x and y, respectively. (b) The resulting
effective dissipative dynamics of the spins is related to a fully-
connected Ising energy function (o, = £1), E(G) [Eq. (5)], in which
the interaction strength between spins i and j is proportional to g;g;.
The effective dynamics features regimes which permit cooling of the

collective spin state, i.e., significant population of the low-energy
configurations.
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Dicke Hamiltonian [20-23]:
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Here, ;" are the Pauli operators and & and @' the bosonic
annihilation and creation operators. The parameters w and
2 denote the fundamental frequency of the bosons and the
coherent coupling strength between the two spin states, re-
spectively. The spin-boson couplings g; will be modeled here
as a set of independent, identically distributed real random
variables. In the following we shall consider two cases: As a
representative of distributions centered around zero, we first
take a uniform one with weight 1/(2gy) between —g( and
go and zero elsewhere. We then consider a bimodal distri-
bution which peaks around two opposite values +gy. This
choice mimics the two-value distribution often encountered
in associative memory models [10,11,19]. More precisely, we
superpose two Gaussians, each of variance s2, centered around
+go. In both cases the mean is zero and we denote the variance
by &°.

We also include dissipation on the bosonic degree of
freedom in the form of Markovian gain and loss processes.
The state of the system, encoded in a density matrix p, thus
evolves under the action of a Lindblad equation

p=Lp=—ill,pl+ Y Lol JALL, 0} @
n=I,g

with the jump operators £, = Jya, ﬁg = Jka', where y (k)
is the loss (gain) rate and y > « > 0.

Let us at this point briefly discuss the validity of the
employed Lindblad master equation description. This is a

formalism widely employed for dissipative light-matter sys-
tems [21,24-26]. Formally, it is derived from a setting in
which work is performed upon the environment so that
its correlation with the system is very quickly erased (on
timescales smaller than the ones at which correlations are
built between different subsystems, in this case spins and
bosons). Equivalently, one can imagine that the system is
coupled in succession to a plethora of equal copies of the
environment [27]. Constant contact with a single environment
would eventually correlate system and bath degrees of free-
dom; in the system dynamics, this would be reflected in the
emergence of nonlocal terms. For instance, in our description
this would produce dissipation on the spins as well, neglecting
which would cause apparent violations of the second law of
thermodynamics [28].

A physical realization of the Dicke model can, for instance,
be achieved on trapped-ion quantum simulators, as it has
been addressed both theoretically [29,30] and experimentally
[31,32]. Following the scheme represented in Fig. 1, such a
system would consist of N ions coupling to the center-of-mass
phonon mode of the lattice. As it has been shown for the
quantum Rabi model [33] and eventually generalized to the
Dicke model [30], the application of multiple laser fields on
the ions yields both the spin dependent coupling gy 67 (a + ah
and the weak driving term, Q6; entering Eq. (1). Finally, as
illustrated in Fig. 1(a), the gain and loss dynamics can be
achieved by applying lasers on the ions on the edge of the
chain, as discussed in Ref. [34]. Since this ion is coupled
to the same phonon mode as the other ions this effectively
implements jump operators of the form introduced in Eq. (2).

III. SPIN DYNAMICS AT STRONG COUPLING

We explore the dynamics Eq. (2) in the strong coupling
regime, i.e., when the driving acting on the spins is much
weaker than the spin-boson interaction (2 < g). In the fol-
lowing, we sketch the perturbative technique we employ
for this purpose. First, we split the Lindblad superoperator
according to £ = Lo + Ly, where £ (-) = —iQ[)_, 6, -] can
be regarded as a small perturbation. Focusing now on L,
we notice that each 67 commutes with all jump operators
and Hamiltonian terms in it, implying that the z components
of the spins constitute N independent conserved quantities
[35]. Hence, the dynamics can be separated in 2V indepen-
dent sectors labeled by the classical spin configurations 6 =
(01,...,0n8) (0; € {—1,1}), where 6] |G) = 0;|G); in other
words, states belonging to different sectors never mix under
the action of L£j. In each sector, the bosonic mode evolves
according to a reduced Lindbladian Ly(6; — o;) in which
each Pauli matrix is replaced with the corresponding eigen-
value extracted from the chosen label. For any such choice of
classical configuration, the reduced Lindbladian is quadratic
in the bosonic operators and thus describes a damped quantum
harmonic oscillator with a (spin-configuration-dependent)
spatial displacement. This admits a single (bosonic) stationary
state, denoted by pz;. We assume that, due to the random
and independent nature of the couplings g;, no additional
symmetries are present which could protect more complex
subspaces. Hence, for any initial state py of the spin-boson
system the corresponding stationary state under Ly is of the
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form pya = Y s Psps ® |5) (6], where the coefficients ps
form a set of classical probabilities.

The perturbation £; couples sectors corresponding to dif-
ferent classical spin configurations &. Its action can be incor-
porated perturbatively [36,37] as long as €2 is small compared
to the typical rate at which coherences between sectors decay
(estimated further below). We define the projector P onto the
stationary manifold of £y according to

Pp(t) =) Trs{(5] p(t1)16)}ps ® 16) (51, (3)

where Trp denotes the partial trace over the bosonic mode,
and use it to define a projected dynamics for Pp(¢). This
is a particular example of a Nakajima-Zwanzig projection
scheme [38]. In our case, this reduction yields a considerable
simplification: From Eq. (3) we see in fact that the time
dependence of the reduced state is entirely encoded in the
coefficients ps(t) = Trg{(c| p(¢)|d)}, which constitute a list
of classical probabilities. These evolve according to a master
equation ps = Y 5 Ws_.5p5 — W5 D5, Where Wz _,5 is
the rate for switching from configuration &’ to &. Note that,
up to second order in €2, the corresponding stochastic process
includes only single spin flips (i.e., Wz .5 # 0 only if &
and ¢’ differ by a single spin). The rates are derived in
Appendix A; here we limit ourselves to provide their final
expression:

2 282y T
Wsse = 2 oodte;%(f(”“)cos 16—AEJ £i5(0)
o Jo w?(n* +4)
0 = 2221 4 cos(o — 2 ince)
T) = ——F——— — e COS(T — — S1n(7),
n(n* +4) n*+4
4nle~ 27 cos(t) — 1]+ [n* — 4]e™ 27 sin(t)
= , 4
s(t) T4 )

where the index i denotes which spin is being flipped and
changes sign between configurations & and 6.

In Eq. (4) we have introduced for brevity the (scaled)
difference between loss and gain rates n = (y —«)/w =
y/w(l —0), the ratio # =« /y € [0, 1) and the parameter
v =401+ 0)n/[(n* + 4)(1 — 0)]. Importantly, the sole de-
pendence on the spin configuration is through the quantity
AE; = gio; Z, 281015 which can be interpreted as an energy
difference (see further below). Note that there is a characteris-
tic scale of exponential suppression of the integrand of Wj_, 5.
This corresponds to the typical timescale involved in the loss
of coherence between sectors belonging to different classi-
cal spin configurations. Since the function f(t) is bounded,
and thereby f(r) 4+t ~ t for T — o0, we can estimate this
timescale as #;, = 177 /w ~ w/(2g°v). Our perturbative expan-
sion thus holds as long as Q < 1/1,..

In the following we perform a detailed investigation of the
effective spin dynamics. It turns out that the loss-gain parame-
ter 7 is central in determining the qualitative dynamical behav-
ior: We will identify an effective high-temperature regime in
the asymptotic limits 7 — oo and n — 0. Furthermore, we
find an effective low-temperature (cooling) dynamics when
n < 1 and 6 is close to unity.

IV. LARGE 5: INFINITE TEMPERATURE DYNAMICS

As remarked above, the quantity AE; can be interpreted as
the change in the energy function

. 1
E@)=—7) igjoi;. )
i#j

occurring when the ith spin is flipped, i.e., AE; = E(—o0;) —
E(0;). For a large gain-loss difference, n > 1, we find that
in Eq. (4) f(r) ~ s(r) ~ O(1/n). Therefore, both functions
are approximately zero and the parameter v ~ 4%77‘1 de-
termines the leading behavior of the timescale #.. The validity
of the perturbative requirement thus imposes an upper bound

to the loss-gain difference, which must satisfy 1 < n <
4¢°(146)
0Q(1=0)"

With the above approximations the rate W5_, 3 acquires a
considerably simpler form: having neglected s(t), it no longer
depends on the sign of AE;, implying that the rates for inverse
processes 0 — o’ and 0’ — o are equal. This gives rise to an
infinite-temperature dynamics which populates all configura-
tions uniformly. This behavior is highlighted in Fig. 2(a) for an
example using couplings g; extracted from a uniform distribu-
tion: We show that the average energy (E) (¢) approaches (up
to small corrections) zero, its infinite-temperature average, as
a consequence of reaching an approximately equal population
of all spin configurations at stationarity.

Interestingly, for large n and up to second order in
perturbation theory, the rate W;_; is formally equiva-
lent to the dissipative dynamics of a fictitious transverse
field Ising model. The corresponding Hamiltonian is Hey =
Qetr D, 67 + EE(67) [with Qe = QA, & = 817 /(wn?)] and
the spins are subject to strong dephasing at a (site-dependent)

2
rate Yefri = % [39]. Here A is an arbitrary factor that

should be chosen consistently with the (perturbative) require-
ment Qesr/Verri < 1. Therefore, in this limit, the bosons can
be interpreted as forming an infinite temperature bath causing
dephasing of the spin degrees of freedom.

V. SMALL 5: APPROXIMATE
LOW-TEMPERATURE DYNAMICS

We now consider the opposite case 0 < n K 1; as we
discuss further below, a regime can be found in which the
rate equation dynamics mimics, to an extent, a thermal process
with finite temperature. To start, we keep 6 as an independent
parameter and consider couplings extracted from the same
uniform distribution employed above. As shown in Fig. 2(b),
in this regime the stationary average of the energy function
Eq. (5) generally approaches values distinctively lower than
the infinite temperature one found in the previous section.
Moreover, our numerical exploration of this parameter regime
suggests that this “cooling” tendency is enhanced as 6 ap-
proaches its upper limit 1. An effect of this can be gleaned
from the two curves for & = 0.5 (dashed line) and 0.9 (solid
line) displayed in Fig. 2(b), where the latter clearly decreases
to a lower value than the former. From a physical stand-
point, recalling that & = k/y describes the relative strength
of losses and gains, this suggests that the bosonic mode cools
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FIG. 2. Regimes of effectively thermal spin dynamics. We set 2 = 0.1, w = 1. (a) Statistical energy distribution versus time for N = 10
spins for large gain-loss difference 1, starting from an initial state where all spins point down. The superposed red solid line displays the
evolution of the average energy, (E) (¢) as a function of time, whereas the shading represents the probability of being in a configuration with
energy E at time r. We set n = 10 and 6 = 1/11 and we select the couplings g; from a uniform distribution in [—go, go] with gy = 3. Inset:
evolution of the probabilities p, for a system of two spins with the same parameters. We compare the effective model (solid lines) with
the numerically exact diagonalization of the full open quantum problem (dashed lines), highlighting good agreement. (b) Statistical energy
distribution versus time for N = 10 spins and corresponding evolution of the average energy, (E) (¢) for n = 0.1 and 8 = 0.9 for the red solid
line and 6 = 0.5 for the red dashed line. We select the couplings g; as in (a). The shading represents the probability density of the energy
levels and refers to the latter case (8 = 0.9). (c) The same analysis of (b) has been performed with g; having been selected from a bimodal
distribution given by the symmetric superposition of two Gaussians centered in gy = %1 and variance s = 0.25. Again, the dynamics tends
to preferentially populate the low-energy configurations at long times, and the more so the closer 6 is to 1. As for (b), the shading relates to the

6 = 0.9 case.

the spins more effectively when higher bosonic numbers are
present.

In the third panel of Fig. 2 we repeat the same analysis for
a set of couplings g; produced from a different distribution.
We take in this case a symmetric, bimodal one to mimic an
associative memory model [19] with the following important
differences: First, as pointed out in previous works [10,11],
accounting for a single bosonic mode implies that only a
single pattern (and its complementary, where all spins are
flipped) can be stored in the system, rendering the memory al-
most trivial. Second, in previous works the couplings can only
take two possible values g, with equal probability. For con-
sistency with our assumptions that no higher symmetries than
the ones we identified at the beginning are present, in our work
we cannot allow the couplings to be equal in pairs (otherwise
the total spin on the pair of sites would be conserved). Hence,
we broaden the peaks into two Gaussians, identical up to a
translation, centered at &g, with variance s2. In other words,
if we denote by Ny, s(g) = (27s?)~1/2exp[—(g — g0)*/(25%)]
a generic normal distribution, we generate our couplings from

P(8) = 5INgy s(8) + N 5(&)]- (6)

With this choice, the cooling behavior is still present and dis-
plays the same qualitative features highlighted for the uniform
case, i.e., the dynamics tends to explore lower energies for
values of 6 closer to 1.

A naive comparison of Figs. 2(b) and 2(c) suggests that the
bosons are more effective in their cooling action on the spins
when the spin-boson couplings are bimodally distributed. In
fact, one can notice a sharper contrast between the shading
(proportional to the population) of the ground state with
respect to the other energy levels in Fig. 2(c) than in Fig.
2(b). However, the two distributions have different variances
and the scale of the shading is different in the two panels. To

more properly address this difference, we have compared the
bimodal distribution used in Fig. 2(c) with a uniform one with
the same variance, i.e., with gy = +/51/4. Figure 3 displays
a counting diagram of the stationary ground-state population
for 1000 realisations of either distribution of the couplings.
Here, one can notice that the bimodal case has, statistically
speaking, a distinctively higher ground-state population than
the uniform case, peaking beyond 0.5. Uniformly distributed
couplings, in contrast, give rise to dynamics which typically
populate the ground state much less, with a finite probability
of having less than 5% population at long times.

VI. THERMAL VERSUS NONTHERMAL RATES

To obtain some insight on this cooling mechanism we
extract now some approximate expressions for the transition
rate, which, for simplicity, we treat as a function of the energy
difference AE, now regarded as a continuous parameter.
Additionally, to simplify the treatment we restrict to the case
where 7 is made smaller by bringing y — «*, while keeping
« and o constant, so that 8 = (1 4+ new/x)~" increases toward
unity as 7 is decreased. Despite being a restriction, this allows
us to explore the most interesting regime, i.e., the one where
the dynamics seems to achieve the most efficient cooling. The
procedure is discussed in some detail in Appendix B, Below
we briefly comment on the main steps involved. First, we note
that, for sufficiently small 5, the integrand defining W;_ 5
is rapidly suppressed for T > O due to a fast initial increase
of f(t) =~ 2(1 — cos 7)/n. Thus, the integral is dominated by
the contribution close to v = 0. Hence, one can expand all
arguments in powers of 7, see Egs. (B2) and (B3). Setting for
simplicity w = k¥ = 1 and keeping for brevity only the leading
orders in  — 0, one obtains T + (1) ~ t2/n — 13/6,v ~ 2
and s(t) ~ —t + t3/6. This implies that the suppression of
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FIG. 3. Ground-state population for two different distributions
of the spin-boson couplings. Histogram of the stationary ground-
state (gs) population for 1000 realisations of either distributions.
Blue (yellow) columns refer to the uniform (bimodal) case. Both
distributions have zero mean and variance g = 17/16. The physical
parameters are w = 1, n =0.1, 0 = 1/(n + 1) = 0.909, Q =1 for
a system of N = 10 spins. The bimodal distribution data peaks
beyond 0.5; the extracted mean is approximately 50% with a standard
deviation of 11%, implying half of the final population typically lies
in the ground state; the tails show a negligible probability of it being
smaller than 20%. Conversely, the uniform distribution generates
a slightly broader profile, with an average of approximately 20%
and a standard deviation of 13%, implying that the ground state is
populated much less in proportion.

the integrand occurs on a timescale t ~ v 1/ (4g,2), whereas
the cosine term oscillates with a frequency which is approx-
imately I'; = 4(AE + g7). We thereby identify (i) a regime
of “small energy jumps,” where I'? < 4g7/n and (ii) a “large
energy jumps” one with Fiz > 4g12. /n. In case (i), we obtain

Q* [T —L(AE+@)
Wi(AE) ~ - /?e 5 , @)

where the index i reminds us of which spin is being flipped
[40]. The rate reaches its maximum when AE = —glg <0
and, in general, W;(|AE|) < W;(—|AE]). This means that spin
flips which lower the energy are favored, consistently with the
picture of a cooling dynamics. Case (ii) can be analyzed using
the asymptotic expansion of Fourier integrals [41], Eq. (B11).
To leading order this yields a power-law decay W;(AE) =
Sng%Fi_ 4. which shares a similar preference for spin flips
which lower the energy. A numerical integration suggests that
Wi(JAE]) < W;(—|AE]) holds also in between the asymptotic
cases (i) and (ii).

To shed further light on the cooling dynamics we analyze
this asymmetry of the rates through the ratio R;(AE) =
Wi(AE)/W;(—AE). This is depicted in Figs. 4(a) and 4(b) as
a function of AE and n, respectively. In regime (i) we have
Ri/(AE) ~ e~*"“E which implies a thermal dynamics with an
effective inverse temperature B.; = 4n. Note that the right-
hand side has no dependence on the index i, implying the ex-
istence of a unique, well-defined temperature for all spin-flip
processes. In Fig. 4(c) we display the ratio log[R;(AE)]/AE

(a) (b)

1R 1.
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FIG. 4. Asymmetry of the rates. We set 2 = 0.1, ® = 0.1, k =
1. (a) Ratio R;,(AE) = W,(AE)/W;(—AE) versus energy difference
|AE|. For small values of n the rate W;(AE) is strongly asymmet-
ric with respect to AE, whereas for large n we have W;(AE) ~
W;(—AE). (b) The ratio R;(AE) is shown for three different values
of AE =0.02, 3, 8 and the values of g, are drawn from a uniform
distribution with support in [—go, go] With go = 6. At small 7,
the ratio R;(AE") approaches one, indicating that configurations are
visited with equal probability as for large n. (c) The three curves
in (b) are rescaled according to log R;(AE)/AE. Their asymptotic
collapse in the limit 7 — O highlights the existence of a unique
inverse temperature B¢ which governs the dynamics when n is
sufficiently small.

for different values of AE and show that different curves
collapse to a single (negative) inverse temperature — e Up
to the edge of case (i). At n = 0 we find that B.¢ approaches
zero, leading to an infinite-temperature dynamics. This is
reasonable, since in this limit the bosonic gain rate approaches
the loss rate. This implies the population of arbitrarily high
Fock states, effectively heating the bosons. The latter then
act as a high-temperature bath on the spins. If, however,
1/Besr remains small or comparable with the energy gap from
the ground states of Eq. (5)—which on average is of order
g>, meaning 4ng”> > 1)—then an effective low-temperature
dynamics is realized.

In case (i), the ratio R;(AE) ~ (AE — g)*/(AE + g3)*
tends to increase towards 1 as AE grows. Typically, the
available AE;s populate both range (i) and (ii), implying
the presence of type (ii) processes which do not follow the
same low-temperature rules obeyed by the “small-jump” ones.
Provided the number of spins N is not too large, these non-
thermal processes constitute, however, a small perturbation
for the following two reasons: first, the distribution of energy
jumps is peaked around 0, implying that, if the parameters are
adequately chosen, then most jumps lie in regime (i). Second,
since the rates are decreasing functions of |AE + g% |, type (ii)
processes occur at smaller rates than the type (i), thermal ones.
A numerically exact analysis of the classical master equation
for N = 10, displayed in Figs. 2(b) and 2(c), indeed shows
that the effect of the nonthermal processes is sufficiently weak
to avoid having a significant population of high-energy states
in the long-time limit. The statistical energy distribution tends
instead to become concentrated on low-energy configurations,
highlighting a clear bias of the dynamics towards cooling, as
compared, e.g., to the n >> 1 case in Fig. 2(a).

We remark that our considerations above are qualitatively
independent of the choice of distribution for the couplings.
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FIG. 5. Nonequilibrium regime. Kolmogorov criterion in a two-
spin subspace with uniformly distributed couplings; the displayed
quantity is the ratio of the product [ | W, of the four rates encountered
when performing the loop clockwise (blue arrows) divided by the
analogous counter-clockwise (red arrows) product [ W, plotted as
a function of 5. This ratio is 1 (signalling detailed balance conditions)
only for large and very small values of 7. The intermediate point
n ~ 2 where [[ W, = [] W, can be safely ignored for the following
reason: for systems with more than two spins there are multiple loops
in configuration space and Kolmogorov’s criterion is never satisfied
simultaneously for all of them (except in the extremal limits n — 0
and n — o0) and the dynamics does not obey detailed balance. The
parameters are: v = 1, 2 = 0.1,k = 1, and go = 4.

The latter can influence instead the quantitative aspects, in
particular the distribution of the energy jumps, and in turn
what portion of them belongs to either the thermal or the
nonthermal type. This can shed some light on the difference
highlighted in Fig. 3: in fact, it is reasonable to expect, among
the two distributions with equal variance, that the uniform
one will typically produce smaller (in modulus) couplings
than the bimodal one, which is peaked instead away from
the origin. Intuitively, the energies Eq. (5) and the energy
jumps, quadratic in the couplings, will generically be smaller
(in modulus) in the former than in the latter. Given that the
parameter n = 0.1, and hence the effective (inverse) tempera-
ture Besr = 41, is the same for both cases displayed in Fig. 3,
it follows that the proportion in which higher-energy states
will be populated will typically be greater for uniformly dis-
tributed couplings than for the bimodal ones. The population
of the ground state reflects this, being smaller in the former
case than in the latter.

VII. BREAKDOWN OF DETAILED BALANCE

Outside the thermal regimes the dynamics is not an equi-
librium one, i.e., it does not obey detailed balance. This can
be proved via Kolmogorov’s criterion [42] which we analyze
for the loop formed in the configuration space of a two-spin
system (see Fig. 5): (1) = (1) = (L) = (1) = (11).
To this end we investigate the ratio between the product
of the rates for the clockwise (blue arrows) cycle and the
corresponding product for the counter-clockwise (red arrows)
one. This ratio goes to 1 when n — oo and also when n — 0,

signaling the emergence of the infinite-temperature dynamics.
For different values n the ratio is typically different from one,
which indicates the persistence of probability currents in the
stationary state and the absence of detailed balance.

VIII. CONCLUSIONS

We have studied a disordered dissipative spin-boson sys-
tem in the limit of strong coupling and weak driving, which
can for example be implemented on trapped ion quantum
simulators. Many aspects of the emerging physics can be un-
derstood in terms of a disordered fully connected Ising model
whose state evolves according to a rate equation. In general,
the dynamics violates detailed balance, and the system is thus
out of equilibrium. However, we could identify parameter
regimes in which the evolution is effectively thermal. Among
them is one where predominantly low-energy configurations
are populated, which mimics the action of a low-temperature
dynamics. We have compared two cases in which the cou-
plings have been randomly generated from either a uniform
or a bimodal distribution. The latter case typically displays
a more effective ability to cool the spins, typically achieving
more than 50% population of the ground state in the stationary
limit. In the future it would be interesting to see whether this
effective cooling mechanism permits to access low-energy
states or even ground states of complex spin networks. This
might open an elegant way for encoding and solving com-
putationally hard problems [18] or associative memories [19]
through Ising energy functions and an appropriate (thermal)
dynamics on quantum simulators.
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APPENDIX A: DERIVATION OF THE RATES

In this section we provide details on the derivation
of Eq. (3). We first consider the evolution of the state
p(t) as p = Lo(p) + Li(p), with Lo = L — Ly and L,(-) =
—iQ[Zi 67,-]. Second, we assume the stationary state
of Ly of the form pyu =Y 5 P55 |0) (G|, where |5) =
{o1, ..., on}, with 0; = =1 and 67 |G) = 0;|G), ps are a set
of classical probabilities and p, is the corresponding bosonic
state, that we assume to be a gaussian state. Considering £
perturbatively with respect to L, and projecting the dynamics
onto the stationary manifold of £y, we exploit the Nakajima-
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Zwanzig formalism to write the evolution of the spin as

+00
PR (1) = TI‘B/ dt/P»C1eLOT/»Clpstal(t)
0

+00 .
=) P} f di’ ) Trgle”s (p5)]
@) i 0 j=*
x (6713) (3167 —18) (31),

where Pp*P"(1) = Trplpsa(1)] = Y5 ps (1) 15) (3], Trp is
the partial trace over the boson, and we have defined the
spin-configuration-dependent superoperators

Vi) = —iwld'a, 1+ Dy () + De ()
—igiMil@" +a), 1 xigio{@ + a), -},

with M; =3, 28101, and Dy, D the dissipative terms rep-
resenting cooling and heating, respectively. By projecting
Eq. (A1) on a state |G'), the dynamics reduces to the evolution
of the classical probabilities ruled by a master equation whose
general form is the following:

Z (Wa '—&Ps —

where W5 = Q% [["* dt >im
sition rate for the sw1tch1ng o—>0
spin-flip processes.

We can now go ahead in evaluating explicitly the expres-
sion for the rates. Exploiting the superoperator’s properties,
we can substitute inside the trace " (po) — (e Vo 1)ps, with
Vi * the adjoint superoperator of Vﬁi and 1 the identity
operator It is worth noticing that the identity operator can
be expressed in terms of a generalised displacement op-
erator of field coherent states as 1 = D(0), where D(t) =
XA =B(O) o= () with (0) = B(0) = y(0) = 0. We then
verify that the displacement operator D(0) is mapped into the
generalised one D(t) by applying the adjoint superoperator

(AD)

0—>U’po ) (A2)

TrB[evévrt(,og)], is the tran-
5’ and it allows only single

By applying the definition Eq. (A5), with expectation values
of the operators obtained considering the Lindblad operator
Ly, we get

+ _ _i )2
X&',i(f) = exXp { 2(1 _ 0) |Olm(7.')|
az* (1)
* n+2i)}’ A7

2igiM <a§,(f)
+
where M = )" ; &107. Thus, the expression of the rate reads

w n—2i

QZ 00
Wsngr=— [ dr)_ eyl (z)
o Jo ' G,i
j==%
:2_92 oodfe*%[f(f)“] cos [16AEir;g?h?(r)i|
® Jo *(*+4) |

V;Ci: indeed, by considering the differential equation
d . A
—— D5 (0] = V; 107 ,(0)l.
d T s s s

we obtain the solutions for the functions oﬁ(r) =a_, (1),

B (t) =B, (), v;(r) =y, (). For initial conditions
i(0) ,Bi(O) = i(O) =0, we get

idg;o;

+ _rpt * __ _ =)
o, (1) =B, (O] = oG —20) —2i)[1 e I,
Vo (1) = i[fl(f)Jr ]+L[S(T)+r]
Oi 2( 2+4)

1= Apll — e 27 cos (t)] — 8¢ 27 sin(T)
fio) = - o ,

dnle™ 27 cos(t) — 1] + (n* — 4)e™ 27 sm(r)
s(t) =
n*+4

(A3)
where we have defined the dimensionless time T = tw, and
n=(U —«)/w,0 =«/y €[0,1),and

__dasom @5+

P -0) P44

The previous steps allow us to write the partial trace
over the boson as Trg[e a'(,oa)] =e¢ Yo (I)TrB[Di [(T)ps]. We
recall that the bosonic state p; has been assumed to be
a gaussian state. In this case, we recognize the quantity
Tr,g[DjE {(t)ps] as the characteristic function X ,(7) of the

state pz. The expression of the characteristic functlon for a
generic Gaussian state pg reads

(A4)

_1=T oy ~
ch[oe(t)] S 1T (DTa(r)+a(t)a’) g—o (t)(a>G’ (A5)

where @7 = (a(t), a*(1)), ()¢ is the expectation value per-
formed over the state pg, and X represents the covariance
matrix, which reads

H(afa)g + (aa')g) — <2a*>(,~ <a>G> A6)
—((a"?)¢ —@"g)
[
_ P8y, _ Bemit
flr)= —77(7)2 n 4)[l e 27 cos(1)] 14 sin(t),
(A8)

where AE; = go; Zz £ 8101 retains the dependence on the
spin configuration.

APPENDIX B: APPROXIMATE EXPRESSION
OF THE RATE FOR n SMALL

For sufficiently small n < 1, the exponent appearing in
W5 _, 5 is dominated by

2
f()y~ 5[1 — cos(7)], B
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implying that the integrand is quickly suppressed as T grows.
We therefore perform an expansion around t = 0, which
yields

T+ f(0)=m>+4) sz - ir3 - - n21'4 +0()
4n" " 24 192
(B2)
and
s(t) = —1 + U SN i e SO 0%.  (B3)
= 24 96 ‘

From the first term in Eq. (B2) we see that the integrand
is strongly suppressed on scales T 2 /7. Noticing that in
the Taylor expansion of T + f(t) odd coefficients are finite,
whereas even ones are O(1/n) for n — 0 and introducing
the rescaled integration variable z = t./n we see that higher
orders are perturbations of order O(n"*+!/2z2"*1 =172} and
can be neglected. Similar considerations can be applied to
s(t), which can be therefore also approximated with its lead-
ing order —7. In the following, for simplicity we set w = 1,
remembering that our “energy” AE; is actually measured by
construction in units of w?. Additionally, we introduce the
shorthand

16
Ii=——(AE +g), B4
1 (AEi+g;) (B4)
so that, by keeping only the lowest orders of the expansion in
T, We can approximate our rate as
e+

Ws o 292/ dre® T cos (), (B5)
0

which can be integrated to give the closed expression

r2

TN -
Wa—_)(}f ~ Qz - Sgi(ZKJrr])' B6
V2@ +n© (B6)

From the expression above one can retrieve Eq. (7) by taking
the leading behavior in the limit  — 0. It is worth remarking
that the exponent can be rewritten as

a2 1287 (AE+ )
822k + 1) 2k + n)(n? +4)? 4g?

B 1287 2@ — Y8
T Qe +4)? 4
= BettE(G) — const., (B7)

highlighting the “thermal” structure of the rates. Note that,
to obtain the approximation Eq. (B5), we have assumed that
we can resum the Taylor expansion of the original cosine to
the function cos(I';t), whose series only coincides with the
former up to O(z?). This is only valid as long as the cosine
does not oscillate significantly before the other Gaussian term
suppresses the integrand; in other words, Eq. (B6) should be
valid up to values of I'; of the order of ~1/,/5. Since we
wish to understand the behavior of the rates as functions of

the energy difference AE; without restrictions imposed by the
other parameters (like 1), we need to account for energies
which exceed this range. To do this, we extract the asymptotic
behavior of the rate for I'; — co. We start by rewriting the
integrand in W as

To—16i-5-
I(Fi, ‘L’) = Re{efzwfz(f(T)JrT)elF,T 16i o (S(‘[)+‘L’)} (B8)

= Re{A(1)eT7). (B9)

We now use the result that, if the function A admits a small
expansion

A=) a,t", (B10)
n=0

then asymptotically in the limit I'; — oo one finds
00 00
f dr A(m)e™ " = "i"nla, I (B11)
0 n=0

Referring back to Eq. (B8), the leading term in this expansion
corresponds to the lowest n for which one finds a nonvan-
ishing real part. In particular, we note that Re[a,i"*'] equals
(—D)"*'Relay 4] if n =21 + 1is odd, and (—1)"*'Im[ay] if
n = 2[ is even. For our function we find

ap =1, (B12a)
a; =0, (B12b)
2
@ = 2@t (B12¢)
_& :
az = ?[ZK-FT]—ZI]. (B12d)

The leading behavior in the large I'; limit is therefore
determined by Re[as], implying

Wi =292f dt I(T;, 7)
0

4
n + 4
16(AE; + g,z-):| - BB

To provide a very crude estimate of where the change from
the two regimes characterized by Eqs. (B6) (“small I';”’) and
(B13) (“large I';”) occurs, we evaluate the point where the two
asymptotic expressions cross (for n sufficiently small): Setting

~ 47 g7 (2 + n)[

2
nl;

7'[ —_
n 88,2(2K+w)
9

40%(2 4 1
8@+ mr, 282K + 1)

(B14)
we find

[ A 422K + 1) |:1
n

1
ogA +4log <§ logA):|, (B15)

where A = 32g%71(2/c + 3.
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