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Auf der Morgenstelle 14, 72076 Tübingen, Germany
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Dicke-like models can describe a variety of physical systems, such as atoms in a cavity or vibrating
ion chains. In equilibrium these systems often feature a radical change in their behavior when
switching from weak to strong spin-boson interaction. This usually manifests in a transition from a
“dark” to a “superradiant” phase. However, understanding the out-of-equilibrium physics of these
models is extremely challenging, and even more so for strong spin-boson coupling. Here we show
that the non-equilibrium strongly interacting multi-mode Dicke model can mimic some fundamental
properties of an associative memory - a system which permits the recognition of patterns, such as
letters of an alphabet. Patterns are encoded in the couplings between spins and bosons, and we
discuss the dynamics of the spins from the perspective of pattern retrieval in associative memory
models. We identify two phases, a “paramagnetic” and a “ferromagnetic” one, and a crossover
behavior between these regimes. The “ferromagnetic” phase is reminiscent of pattern retrieval. We
highlight similarities and differences with the thermal dynamics of a Hopfield associative memory
and show that indeed elements of “machine learning behavior” emerge in the strongly coupled
multi-mode Dicke model.

Introduction— Cavity, circuit [1] and waveguide quan-
tum electrodynamics (QED) [2], as well as trapped ions
[3, 4] provide controllable platforms for quantum simu-
lation. These systems are often described as collections
of two-level components (spins) coupled via one or more
bosonic degrees of freedom (such as photons or phonons).
At the most fundamental level, their properties are cap-
tured by the Dicke model [5, 6] which, under equilibrium
conditions and for large number of spins N →∞, displays
a quantum phase transition from a dark to a superradiant
phase: for weak spin-boson coupling the average occupa-
tion number of bosons is sub-extensive (it grows slower
than N with the number of spins), whereas it is exten-
sive (∝ N) above a critical threshold [7, 8]. This phase
transition has been widely investigated [9–11], observed
in Bose-Einstein condensates in optical cavities [12, 13]
and recently studied in more general, non-equilibrium
settings [14, 15].

While originally predicted for a single bosonic degree of
freedom, this phase transition was eventually generalized
to a multi-mode scenario [16], where each spin interacts
with several different bosonic modes. Interesting phe-
nomena can emerge in this setting, in particular when
the spin-boson couplings are non-uniform, and depend
on both the specific spin and the specific boson [17, 18].
In this case the superradiant phase features glassy be-
havior [19–21] as well as an energy landscape that shares
similarities with simple neural networks [22–25].

In this work, we consider a driven-dissipative multi-
mode Dicke (MMD) model, sketched in Fig. 1(a), and
show that its stationary properties resemble those of the
so-called Hopfield neural network (HNN) [26, 27], a clas-
sical spin model behaving like a basic associative memory.

FIG. 1. Disordered, dissipative MMD model. (a) N
spin-1/2 particles are strongly coupled to two bosonic modes
with couplings giµ (i = 1, ...,N , µ = 1,2). The spins are weakly
driven at a strength Ω ≪ giµ. Each bosonic mode is sub-
jected to two dissipative processes, gain and loss, occuring
at rates κ and γ respectively. Patterns are encoded in the
couplings between the spins and the bosons, corresponding to
G⃗µ = [sign(g1µ), ..., sign(gNµ)]

T (µ = 1,2). (b) Phase diagram
of the overlap mµ = (Gµ ⋅ σ⃗stat)/N between the classical, sta-
tionary spin configuration and the pattern as a function of
the parameter η = (γ − κ)/ω (for details see text). A smooth
transition between two phases occurs, these being character-
ized by the presence of several (ferromagnetic or “retrieval”
phase) and one (paramagnetic one) basins of attraction. The
insets show sketches of the effective free energy landscape.

More precisely, we identify a crossover between a disor-
dered “paramagnetic” phase and an ordered “ferromag-
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netic” one [see Fig. 1(b)]; the latter appears to be closely
related to the retrieval phase of the HNN, characterised
in turn by the ability to recall previously stored infor-
mation. We furthermore explore the impact of fluctu-
ating spin-boson coupling constants on this crossover.To
do so, we focus our treatment on the simplest non-trivial
instance, including in our simulations only two bosonic
modes. We show that analogies between the MMD model
and phases of the HNN are not limited to equilibrium set-
tings [21].

The Hopfield model: a brief recap— In physical terms,
the HNN is a fully-connected classical spin model consist-
ing of N Ising variables (“neurons”) σi = ±1, i = 1 . . .N ,

collated to form configurations σ⃗ = (σ1, . . . , σN)T . Infor-
mation is stored in the form of a number M of special
configurations, or “patterns”, ξ⃗µ, µ = 1 . . .M . In what
follows, we employ Roman (Greek) letters for site (pat-
tern) indices. The patterns enter the definition of the
energy function

EHop(σ⃗) = −
1

2

N

∑
i≠j
Jijσiσj , (1)

via the connectivity matrix Jij = 1
N ∑

M
µ=1 ξiµξjµ. Under

the hypotheses that (i) the patterns are “few” M/N <
0.14 and (ii) different patterns are approximately orthog-
onal, or more precisely, that they are chosen in such a
way that limN→∞ (ξ⃗µ ⋅ ξ⃗ν/N) = δµν , one can prove that

the energy is minimised by the 2M configurations σ⃗ = ±ξ⃗µ
(µ = 1 . . .M) [28]. In other words, the patterns (and their
opposites −ξ⃗µ) are the ground states of the system and an
ideal annealing procedure to zero temperature would re-
cover them perfectly. In order to quantify such retrieval,
it is convenient to introduce the M overlaps ζµ = ξ⃗µ ⋅ σ⃗/N
which measure how much the configuration aligns with
any given stored pattern. For sufficiently large N , a fre-
quent choice is to describe the pattern components ξiµ as
independent random variables which take the values ±1
with equal probabilities.

Similarly to a fully-connected Ising model, the HNN
undergoes a continuous equilibrium phase transition at
inverse temperature β = 1, from a paramagnetic phase
(β < 1) in which ζµ → 0 ∀µ to a retrieval (or ferromag-
netic) phase β > 1 where a single component ζµ̄ acquires a
non-vanishing value, while ζµ → 0 ∀µ ≠ µ̄. In the retrieval
phase (and in the thermodynamic limit), a thermal dy-
namics (e.g. heat-bath) implemented on the HNN will
eventually lead to the configuration approximately re-
producing the features of one of the stored patterns. The
specific choice can be dictated by the initial condition: an
initial configuration with small, but non-negligible, over-
lap ζµ̄ will restrict the dynamics to the corresponding
basin of attraction and the configuration at long times
will fluctuate approximately around ±ξ⃗µ̄. This ability to
faithfully, up to some noise, reconstruct a pattern from
partial initial information is what qualifies the HNN as

an associative memory.
Non-equilibrium MMD model— We now introduce the

open quantum spin-boson system of interest. For the
sake of generality, our formulas in the following will ac-
count for a case with generic number of bosonic modes,
even though our simulations further below will be ac-
tually restricted to having only two. As sketched in
Fig. 1(a), we consider N spin-1/2 particles interacting
with M independent bosonic modes, according to the
multi-mode Dicke [5–8] Hamiltonian Ĥ = ∑Mµ=1 ωµâ

�
µâµ +

∑Mµ=1∑
N
i=1 giµσ̂

z
i (â�µ + âµ) + Ω∑Ni=1 σ̂

x
i . Here, σ̂x,y,zi are

the i-th spin Pauli operators, âµ and â�µ the annihilation
and creation operators of the µ-th bosonic mode, ωµ the
corresponding frequency. The parameter Ω drives transi-
tions between spin states and the giµs are the spin-boson
couplings. For concreteness, we assume these to be inde-
pendent, identically-distributed, real random variables.

Additionally, the system exchanges bosons with a
Markovian bath. The system state ρ evolves accord-
ing to a Lindblad equation [29, 30] ρ̇ = Lρ = −i[Ĥ, ρ] +
∑µ,n=l,g L̂n,µρL̂�

n,µ − 1
2
{L̂�

n,µL̂n,µ, ρ}, where jump opera-

tors L̂l,µ = √
γµâµ, L̂g,µ = √

κµâ
�
µ describe independent

processes of loss and gain of bosons at rates γµ > κµ ⩾ 0.
As for the case of a single boson [31], we can obtain an

effective master equation restricted to the spin degrees
of freedom only. The technical details are reported in
the Supplementary Material [32]; here we summarize the
main conceptual steps: for vanishing Ω, each σ̂zi is a con-
served quantity; it is therefore natural to focus our atten-
tion on the z-component eigenbasis ∣σ⃗⟩ = ∣(σ1, . . . , σN)T ⟩,
σ̂zi ∣σ⃗⟩ = σi ∣σ⃗⟩, which is defined in terms of “classical con-
figurations” σ⃗. Due to their conservation, each config-
uration labels, at Ω = 0, a subspace of states discon-
nected from the others, where the only non-trivial evo-
lution takes place in the bosonic part. In particular, for
any fixed ∣σ⃗⟩ the bosonic stationary state is a displaced
Gaussian state ρσ⃗. This implies that the dynamics has a
degenerate stationary space spanned by the 2N elemen-
tary combinations ∣σ⃗⟩ ⟨σ⃗∣⊗ ρσ⃗. This “classical” subspace
gets dynamically coupled to the remainder of the space
by the introduction of the term ∝ Ω; however, as long as
Ω is sufficiently small, standard perturbative techniques
[33, 34] can be employed to project the resulting dynam-
ics back onto the classical subspace. By additionally trac-
ing over the bosonic modes, a reduced spin dynamics is
found [35, 36]. Up to order Ω2, this is encoded in a clas-
sical rate equation

ṗσ⃗ =∑
σ⃗′

(Wσ⃗′→σ⃗pσ⃗′ −Wσ⃗→σ⃗′pσ⃗) , (2)

with pσ⃗ the probability to find the spins in the configura-
tion σ⃗ and Wσ⃗→σ⃗′ the transition rate for switching from
configuration σ⃗ to σ⃗′. Due to the structure of the pertur-
bative term, the only allowed elementary processes are
single spin flips, i.e. Wσ⃗→σ⃗′ ≠ 0 exclusively when σ⃗ and
σ⃗′ differ by a single spin. Restricting for simplicity to
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γµ ≡ γ, κµ ≡ κ, ωµ ≡ ω, ∀µ, the derivation of Eq. (2) can
be found in Ref. [32]. We also set ω = 1.

Energy function, overlaps and coupling distribution—
Remarkably, transition rates only depend on the
spin configuration through the quantity ∆Ei =
σi∑µ,j≠i giµgjµσj , which can be regarded as the cost
∆Ei = E(−σi) −E(σi) of flipping the i-th spin given an
energy function of the form

E(σ⃗) = −1

4
∑
µ
∑
i≠j
giµgjµσiσj . (3)

Equation (3) bears a clear resemblance to the Hop-
field energy (1) if one replaces the patterns ξiµ with
the spin-boson couplings giµ. With this analogy in
mind, we interpret the spin-boson couplings as “noisy
patterns”. Specifically, we pick the coupling costants
giµ from a bimodal distribution peaked around ±1,
P(g) = 1

2
[N+1,s(g) + N−1,s(g)], given by the sym-

metric superposition of two Gaussians Ng0,s(g) =
(2πs2)1/2 exp−(g − g0)2/(2s2). From this perspective,
it is natural to introduce, as prospective order pa-
rameters, and in analogy to the HNN, the overlaps
mµ = ∑Ni=1 sign(giµ)σi/N ≡ G⃗µ ⋅ σ⃗/N , where G⃗µ =
[sign(g1µ), ..., sign(gNµ)]T represent the noiseless pat-
terns.

The simplest non-trivial instance of associative be-
haviour hinges upon two independent memories (pat-
terns). We thus run all our simulations at M = 2; ad-
ditionally, we focus on the behaviour of mµ upon vary-
ing only the parameter η = γ − κ that quantifies the net
bosonic loss rate. As we show further below, this param-
eter controls, to some extent, effective thermal fluctua-
tions. We further fix κ/γ = 0.9 and N = 50. Finally, as
transition rates are ∝ Ω2, we rescale the time accordingly
and effectively set Ω = 1.

Non-equilibrium dynamics— We simulate the dynam-
ics (2) via kinetic Monte Carlo methods [37–39]. For
convenience, we call different realizations of the stochas-
tic process “trajectories”, reserving “realizations” for dif-
ferent random choices of the couplings.

As a starting point of the analysis we consider that the
HNN dynamics within the retrieval [paramagnetic] phase
is characterized by the presence of multiple [a single]
basins of attractions ζµ ≈ ±1 [ζµ ≈ 0]. Two trajectories
(at fixed coupling realization) of the stochastic process
(2) are shown in Fig. 2(a) for two distinct η regimes. In
both cases, the initial configuration is 80% aligned with
the first pattern, implying m1(t = 0) = 0.6. For ease of vi-
sualisation we apply a gauge transformation σi → Gi,1σi,
Gi,µ → Gi,1Gi,µ which aligns all the components of the
first pattern. The components are then re-ordered to
bring all the positive components of the second pattern
on one side and all the negative ones on the other. In the
small-η regime (left-hand side) the dynamics is trapped
for long times in configurations close to either pattern;
these long-lasting periods are separated by fast switching

from one pattern to the other, a behavior commonly seen
in finite-size versions of systems undergoing spontaneous
symmetry breaking. Phenomenologically [see Fig. 1(b)],
the free energy landscape over the space of configura-
tions breaks into different, approximate basins of attrac-
tion (BA); the dynamics tends to remain confined in one
such potential well until a rare, sufficiently large fluctu-
ations is able to overcome the barrier, after which the
dynamics is trapped again for long times in the new BA.
A similar behavior would also be observed, at finite size,
in the thermal dynamics of the HNN within the retrieval
phase. For large η (right-hand side), instead, memory of
the initial state is quickly lost; the dynamics does not ap-
preciably approach either pattern, implying m1 ≈m2 ≈ 0
and corresponding to a case with a single, trivial BA,
analogous to the paramagnetic phase of the HNN.

The emergence of multiple BAs for small η, in which
the configuration tends to fluctuate close to one of the
recorded patterns, shows that, in spite of the dissipa-
tion, the system is still dynamically capable of retriev-
ing part of the stored information. In order to quan-
tify this very capacity, we consider averages over a num-
ber Ntraj of trajectories, which we denote by O(t) for
an observable O at time t. Figure 2(b) shows the typi-

cal evolution of the average overlaps ∣mµ(t)∣ (grey and
black curves) at fixed coupling realization, η = 1 and
Ntraj = 200, where the absolute value is taken to avoid
averaging to zero due to the σ⃗ ↔ −σ⃗ symmetry of the
model. These quantities clearly assume finite values at
long times. These values, however, are not indicative of
the overlaps that can be actually achieved in any given
trajectory. This is because, once the dynamics starts
exploring different BAs, at most one overlap will be ap-
preciably different from zero at any given time. We clar-
ify this with an example: say that, at a large time t,
pNtraj trajectories (with p < 1) align with the first pat-
tern giving ∣m1(t)∣ = m, whereas the others align with

the second one (m1(t) ≈ 0). Then, ∣m1(t)∣ ≈ pm <m. To
obviate this reduction, we also study the averaged max-
imum M(t) = max(∣m1(t)∣, ∣m2(t)∣) which constitutes a
one-component order parameter symmetric under sign
change σ⃗ ↔ −σ⃗ and pattern permutation (1 ← 2); this
symmetrization makes M(t) a more reliable estimate of
the overlap that can be achieved within individual tra-
jectories on either pattern.

Stationary properties— To estimate the extent of the
retrieval regime, we now focus on the stationary (long-
time) properties and studyM(t→∞) as a function of η.
We additionally account for the fact that this quantity
depends on the specific realization of the couplings and is
thus a random variable. We thereby denote by ⟨M⟩g its
average over the previously-defined doubly-peaked distri-
bution of the giµs and plot it against η in Fig. 2(c).

As discussed in Ref. [31], when considering the large
and the small η limits, effectively thermal regimes can oc-
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FIG. 2. (a)-(b) Stochastic dynamics. We select the spin-boson couplings from a bimodal distribution given by two superposed
Gaussians centerd at g0 = ±1 and standard deviation s = 0.25. (a) Time evolution of a spin configuration at fixed disorder

realization. The two patterns G⃗1,2 are represented in the legend. At the initial time, the overlap between the spin configuration
and G1 is m1(0) = 0.6. The left-hand side panel shows the time evolution at η = 1, whereas the right-hand side shows the time
evolution at η = 5. (b) Time evolution of order parameter and overlaps as a function of time, at η = 1. The overlaps are shown
in terms of the absolute values averaged over Ntraj = 200 realizations of the stochastic process (2). The initial configuration
is chosen randomly. (c)-(d) Stationary properties. Disorder-averaged order parameter ⟨M⟩g as a function of η and its

standard deviation (half error bars) ±(⟨M2
⟩g − ⟨M⟩

2
g)

1/2, resulting after the average over Ndistr = 30 disorder realizations of

the (symmetrized) order parameter M. The specific times at which the points are taken differ at different η since, as can be
gleaned from Fig. 2(a), the dynamical time-scales differ greatly in the opposite regimes of small and large η. Lines are guides
for the eyes. (c) The interaction coupling are selected from a bimodal distribution given by superposing two Gaussians centred
in g0 = ±1 and with standard deviation s = 0.25. (d) Plots of the symmetrised order parameter against η for three values of
the standard deviation s = 0.25 (red star), s = 0.125 (magenta square), and s = 0.063 (blue circle), as reported in the legend.
Different Gaussians distribution are represented in the inset. Other parameters are N = 50, M = 2, ω = 1, κ/γ = 0.9.

cur. At large η, an infinite temperature scenario emerges.
The finite value taken by the disorder-averaged ⟨M⟩g in
this regime is due to the finite size of the system. As η is
decreased, a crossover emerges towards larger and larger
values and for η ≈ O(1) it seems to reach a maximum
of approximately 0.5, meaning 75% of the configuration
spins are aligned with a pattern. In this regime, the er-
ror bars get larger as well, implying that the system be-
comes more sensitive to the specific values taken by the
spin-boson couplings. Combining these results with the
dynamical ones from the previous section, showing the
emergence of several approximate BAs, suggests that the
two regimes, η large and small, reproduce to an extent
the physics of the paramagnetic and retrieval phases of
a HNN, with η playing the role of an effective temper-
ature. Future investigations at variable system size will
shed further light on the features of the crossover.

Influence of pattern noise— We recall that, in order
to connect the physics of the HNN to our model, we
considered the couplings g⃗µ as noisy patterns G⃗µ. One
can thus distinguish between two sources of fluctuations:

(i) the randomness of the patterns, whose components
can be either ±1 with equal probability , and (ii) the
noise due to the finite width s of the distribution peaks
around ±1.

It is worth noticing that, while (i) is present in the
HNN as well, (ii) represents an additional source of noise
specific to our model. For this reason, we wish to bet-
ter understand its impact on the retrieval ability of the
dynamics, reporting the result in Fig. 2(d). After having
excluded the rightmost points η > 6, we compare the data
used for the curve in panel (c), corresponding to s = 0.25
(red) to two additional data sets analogously obtained for
s = 0.125 (magenta) and 0.063 (blue). Interestingly, re-
ducing s does not seem to affect the standard deviation
(i.e. the error bars); instead, one can spot a decrease
in the average values ⟨M⟩g. This suggests that small
amounts of noise over the patterns can very slightly im-
prove the retrieval of stored information. Although the
cause is not entirely clear, it is worth mentioning that a
similar effect can be observed in the HNN too (see Ref.
[32] for further details), where, at finite size, the introduc-
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tion of disorder over the patterns induces a broadening
of the order parameter profile. This broadening results
in an effective increase of the overlaps close to the crit-
ical point; as one moves deeper in the retrieval phase,
however, the effect is reversed and the average overlap
decreases at larger noise levels.

Conclusions— We have investigated the dynamics and
the stationary phases of a dissipative MMD model, high-
lighting analogies between this many-body system and
the HNN, such as a pattern retrieval dynamics and a
crossover between a retrieval and a paramagnetic phase.
Beyond mimicking the HNN, physical realizations of
this spin-boson Hamiltonian, e.g. atom-cavity setups,
have the potential to systematically probe the quantum
regime, i.e. go beyond the perturbative limit consid-
ered here. Increasing the degree of ”quantumness”, i.e.
adding the possibility to host superpositions and entan-
glement offers intriguing potential for exploring quantum
effects in the context of machine learning.
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