148 research outputs found

    Application of the biomization technique in the Eastern Colombian Andes

    Full text link
    Two pollen records (Lake Fuquene and Pantano de Martos) are analyzed in order to test the usefulness of the Biomization technique to management on forest adaptation to climate change. This work focuses on Biomes and Plant Functional Types response to climate changes on specific dates (18, 14, 12.5, 8 and 6 Kyr) along the Late Quaternary, as deduced from the pollen composition. Results show different responses of vegetation to changes in past environmental conditions, which can be attributed to the different altitudes of the two study sites. While biomes in Lake Fuquene (2500 m a.s.l.) shift from Cool Grassland at 18 Kyr to Cool Mixed Forest and Cool evergreen Forest at 6 Kyr ago, no biome shift is detected in Pantano de Martos (3200 m a.s.l.) through the Late Quaternary. A look to the different Plant Functional Types taking part on the surroundings of the study sites at different ages, together with the analyses of Arboreal / Non Arboreal pollen percentages, give a detailed idea of the ecosystem response to past climate changes. This study shows the potential of the Biomization technique as a simple and powerful tool to analyze ecosystem responses at local and regional scales

    A 3000-year record of vegetation changes and fire at a high-elevation wetland on Kilimanjaro, Tanzania

    Get PDF
    Kilimanjaro is experiencing the consequences of climate change and multiple land-use pressures. Few paleoenvironmental and archeological records exist to examine historical patterns of late Holocene ecosystem changes on Kilimanjaro. Here we present pollen, phytolith, and charcoal (>125 μm) data from a palustrine sediment core that provide a 3000-year radiocarbon-dated record collected from a wetland near the headwaters of the Maua watershed in the alpine and ericaceous vegetation zones. From 3000 to 800 cal yr BP, the pollen, phytolith, and charcoal records show subtle variability in ericaceous and montane forest assemblages with apparent multicentennial secular variability and a long-term pattern of increasing Poaceae and charcoal. From 800 to 600 cal yr BP, montane forest taxa varied rapidly, Cyperaceae abundances increased, and charcoal remained distinctly low. From 600 yr cal BP to the present, woody taxa decreased, and ericaceous taxa and Poaceae dominated, with a conspicuously increased charcoal influx. Uphill wetland ecosystems are crucial for ecological and socioeconomic resilience on and surrounding the mountain. The results were synthesized with the existing paleoenvironmental and archaeological data to explore the high spatiotemporal complexity of Kilimanjaro and to understand historical human-environment interactions. These paleoenvironmental records create a long-term context for current climate, biodiversity, and land-use changes on and around Kilimanjaro

    Вивчення кварк-глюонної плазми хіггсового механізму порушення електрослабкої симетрії

    Get PDF
    Вже багато років наукове оточення всього світу хвилює питання звідки бере свій початок стандартна теорія походження матерії

    Novel aspects of the immune response involved in the peritoneal damage in chronic Kkdney disease patients under dialysis

    Full text link
    Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRTThis research was funded by grants from the Instituto de Salud Carlos III (ISCIII) and Fondos FEDER European Union (PI20/00140, PI19/00815, and DTS20/00083). Red de Investi gación Renal REDINREN: RD16/0009/0003 to M.R-O and RICORS2040; RD21/0005/0002 funded by European Union—NextGenerationEU, Sociedad Española de Nefrología. Innovation programme under the Marie Skłodowska-Curie grant of the European Union’s Horizon 2020 (IMPROVE-PD ID: 812699) to M.R-O. E.K. was supported by the grant from the Narodowe Centrum Nauki (NCN, Polish National Science Centre; 2018/29/N/NZ3/02504). R.S. was supported by Ministry for Health of Italy (Ricerca Corrente). This work was also supported by a grant (PID 2019-110132RB I00/AEI/10.13039/501100011033) from the Spanish Ministry of Science and Innovation/Fondo Europeo de Desarrollo Regional (MICINN/FEDER) to M.L.-C

    Small sinking particles control anammox rates in the Peruvian oxygen minimum zone

    Get PDF
    Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April–June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128–512 µm), even though anammox bacteria were not directly associated with particles. This suggests that the relationship between anammox rates and particles is related to the ammonium released from particles by remineralization. To investigate this, ammonium release from particles was modelled and theoretical encounters of free-living anammox bacteria with ammonium in the particle boundary layer were calculated. These results indicated that small sinking particles could be responsible for ~75% of ammonium release in anoxic waters and that free-living anammox bacteria frequently encounter ammonium in the vicinity of smaller particles. This indicates a so far underestimated role of abundant, slow-sinking small particles in controlling oceanic nutrient budgets, and furthermore implies that observations of the volume of small particles could be used to estimate N-loss across large areas

    Staff-Pupil SARS-CoV-2 Infection Pathways in Schools: A Population Level Linked Data Approach

    Get PDF
    Background Better understanding of the role that children and school staff play in the transmission of SARS-CoV-2 is essential to guide policy development on controlling infection while minimising disruption to children’s education and well-being.Methods Our national e-cohort (n=464531) study used anonymised linked data for pupils, staff and associated households linked via educational settings in Wales. We estimated the odds of testing positive for SARS-CoV-2 infection for staff and pupils over the period August– December 2020, dependent on measures of recent exposure to known cases linked to their educational settings.Results The total number of cases in a school was not associated with a subsequent increase in the odds of testing positive (staff OR per case: 0.92, 95% CI 0.85 to 1.00; pupil OR per case: 0.98, 95% CI 0.93 to 1.02). Among pupils, the number of recent cases within the same year group was significantly associated with subsequent increased odds of testing positive (OR per case: 1.12, 95% CI 1.08 to 1.15). These effects were adjusted for a range of demographic covariates, and in particular any known cases within the same household, which had the strongest association with testing positive (staff OR: 39.86, 95% CI 35.01 to 45.38; pupil OR: 9.39, 95% CI 8.94 to 9.88).Conclusions In a national school cohort, the odds of staff testing positive for SARS-CoV-2 infection were not significantly increased in the 14-day period after case detection in the school. However, pupils were found to be at increased odds, following cases appearing within their own year group, where most of their contacts occur. Strong mitigation measures over the whole of the study period may have reduced wider spread within the school environment

    CCN2 Binds to Tubular Epithelial Cells in the Kidney

    Get PDF
    Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression

    COVID-19 mitigation measures in primary schools and association with infection and school staff wellbeing: An observational survey linked with routine data in Wales, UK

    Get PDF
    IntroductionSchool-based COVID-19 mitigation strategies have greatly impacted the primary school day (children aged 3–11) including: wearing face coverings, two metre distancing, no mixing of children, and no breakfast clubs or extra-curricular activities. This study examines these mitigation measures and association with COVID-19 infection, respiratory infection, and school staff wellbeing between October to December 2020 in Wales, UK.MethodsA school staff survey captured self-reported COVID-19 mitigation measures in the school, participant anxiety and depression, and open-text responses regarding experiences of teaching and implementing measures. These survey responses were linked to national-scale COVID-19 test results data to examine association of measures in the school and the likelihood of a positive (staff or pupil) COVID-19 case in the school (clustered by school, adjusted for school size and free school meals using logistic regression). Linkage was conducted through the SAIL (Secure Anonymised Information Linkage) Databank.ResultsResponses were obtained from 353 participants from 59 primary schools within 15 of 22 local authorities. Having more direct non-household contacts was associated with a higher likelihood of COVID-19 positive case in the school (1–5 contacts compared to none, OR 2.89 (1.01, 8.31)) and a trend to more self-reported cold symptoms. Staff face covering was not associated with a lower odds of school COVID-19 cases (mask vs. no covering OR 2.82 (1.11, 7.14)) and was associated with higher self-reported cold symptoms. School staff reported the impacts of wearing face coverings on teaching, including having to stand closer to pupils and raise their voices to be heard. 67.1% were not able to implement two metre social distancing from pupils. We did not find evidence that maintaining a two metre distance was associated with lower rates of COVID-19 in the school.ConclusionsImplementing, adhering to and evaluating COVID-19 mitigation guidelines is challenging in primary school settings. Our findings suggest that reducing non-household direct contacts lowers infection rates. There was no evidence that face coverings, two metre social distancing or stopping children mixing was associated with lower odds of COVID-19 or cold infection rates in the school. Primary school staff found teaching challenging during COVID-19 restrictions, especially for younger learners and those with additional learning needs
    corecore