320 research outputs found
Cdk1-Dependent Phosphorylation of Cdc13 Coordinates Telomere Elongation during Cell-Cycle Progression
SummaryElongation of telomeres by telomerase replenishes the loss of terminal telomeric DNA repeats during each cell cycle. In budding yeast, Cdc13 plays an essential role in telomere length homeostasis, partly through its interactions with both the telomerase complex and the competing Stn1-Ten1 complex. Previous studies in yeast have shown that telomere elongation by telomerase is cell cycle dependent, but the mechanism underlying this dependence is unclear. In S. cerevisiae, a single cyclin-dependent kinase Cdk1 (Cdc28) coordinates the serial events required for the cell division cycle, but no Cdk1 substrate has been identified among telomerase and telomere-associated factors. Here we show that Cdk1-dependent phosphorylation of Cdc13 is essential for efficient recruitment of the yeast telomerase complex to telomeres by favoring the interaction of Cdc13 with Est1 rather than the competing Stn1-Ten1 complex. These results provide a direct mechanistic link between coordination of telomere elongation and cell-cycle progression in vivo
TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends
The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities
Investigating the role of the Est3 protein in yeast telomere replication
The Est3 subunit of yeast telomerase, which adopts a predicted OB-fold, is essential for telomere replication. To assess the possible contributions that Est3 might make to enzyme catalysis, we compared telomerase activity from wild type and est3-Δ strains of Saccharomyces castellii, which revealed that loss of the Est3 subunit results in a 2- to 3-fold decline in nucleotide addition. This effect was not primer-specific, based on assessment of a panel of primers that spanned the template of the S. castellii telomerase RNA. Furthermore, using nuclear magnetic resonance chemical shift perturbation, no chemical shift change was observed at any site in the protein upon addition of single-stranded DNA, arguing against a role for Est3 in recognition of telomeric substrates by telomerase. Addition of exogenous Est3 protein, including mutant Est3 proteins that are severely impaired for telomere replication in vivo, fully restored activity in est3-Δ telomerase reactions. Thus, Est3 performs an in vivo regulatory function in telomere replication, which is distinct from any potential contribution that Est3 might make to telomerase activity
DNA damage signalling prevents deleterious telomere addition at DNA breaks
The response to DNA damage involves regulation of multiple essential processes to maximize the accuracy of DNA damage repair and cell survival 1. Telomerase has the potential to interfere with repair by inappropriately adding telomeres to DNA breaks. It was unknown whether cells modulate telomerase in response to DNA damage, to increase the accuracy of repair. Here we report that telomerase action is regulated as a part of the cellular response to a DNA double-strand break (DSB). Using yeast, we show that the major ATR/Mec1 DNA damage signalling pathway regulates telomerase action at DSBs. Upon DNA damage, MEC1-RAD53-DUN1-dependent phosphorylation of the telomerase inhibitor Pif1 occurs. Utilizing a separation of function PIF1 mutation, we show that this phosphorylation is required for the Pif1-mediated telomerase inhibition that takes place specifically at DNA breaks, but not telomeres. Hence DNA damage signalling down-modulates telomerase action at a DNA break via Pif1 phosphorylation, thus preventing aberrant healing of broken DNA ends by telomerase. These findings uncover a novel regulatory mechanism that coordinates competing DNA end-processing activities and thereby promotes DNA repair accuracy and genome integrity
Shelterin-Like Proteins and Yku Inhibit Nucleolytic Processing of Saccharomyces cerevisiae Telomeres
Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks (DSBs) by packaging them into protective structures called telomeres that prevent DNA repair/recombination activities. Here we investigate the role of key telomeric proteins in protecting budding yeast telomeres from degradation. We show that the Saccharomyces cerevisiae shelterin-like proteins Rif1, Rif2, and Rap1 inhibit nucleolytic processing at both de novo and native telomeres during G1 and G2 cell cycle phases, with Rif2 and Rap1 showing the strongest effects. Also Yku prevents telomere resection in G1, independently of its role in non-homologous end joining. Yku and the shelterin-like proteins have additive effects in inhibiting DNA degradation at G1 de novo telomeres, where Yku plays the major role in preventing initiation, whereas Rif1, Rif2, and Rap1 act primarily by limiting extensive resection. In fact, exonucleolytic degradation of a de novo telomere is more efficient in yku70Δ than in rif2Δ G1 cells, but generation of ssDNA in Yku-lacking cells is limited to DNA regions close to the telomere tip. This limited processing is due to the inhibitory action of Rap1, Rif1, and Rif2, as their inactivation allows extensive telomere resection not only in wild-type but also in yku70Δ G1 cells. Finally, Rap1 and Rif2 prevent telomere degradation by inhibiting MRX access to telomeres, which are also protected from the Exo1 nuclease by Yku. Thus, chromosome end degradation is controlled by telomeric proteins that specifically inhibit the action of different nucleases
Recommended from our members
Multiple POT1–TPP1 Proteins Coat and Compact Long Telomeric Single-Stranded DNA
Telomeres are nucleoprotein complexes that cap and protect the ends of linear chromosomes. In humans, telomeres end in 50–300 nt of G-rich single-stranded DNA (ssDNA) overhangs. Protection of telomeres 1 (POT1) binds with nanomolar affinity to the ssDNA overhangs and forms a dimer with another telomere-end binding protein called TPP1. Whereas most previous studies utilized telomeric oligonucleotides comprising single POT1–TPP1 binding sites, here, we examined 72- to 144-nt tracts of telomeric DNA containing 6–12 POT1–TPP1 binding sites. Using electrophoretic mobility gel shift assays, size-exclusion chromatography, and electron microscopy, we analyzed telomeric nucleoprotein complexes containing POT1 alone, POT1–TPP1, and a truncated version of POT1 (POT1-N) that maintains its DNA-binding domain. The results revealed that POT1-N and POT1–TPP1 can completely coat long telomeric ssDNA substrates. Furthermore, we show that ssDNA coated with human POT1–TPP1 heterodimers forms compact, potentially ordered structures
Mammalian Rif1 contributes to replication stress survival and homology-directed repair
Multifunctional protein Rif1 accumulates at stalled replication forks to facilitate DNA repair during S phase
The Individual Blood Cell Telomere Attrition Rate Is Telomere Length Dependent
Age-associated telomere shortening is a well documented feature of peripheral blood cells in human population studies, but it is not known to what extent these data can be transferred to the individual level. Telomere length (TL) in two blood samples taken at ∼10 years interval from 959 individuals was investigated using real-time PCR. TL was also measured in 13 families from a multigenerational cohort. As expected, we found an age-related decline in TL over time (r = –0.164, P<0.001, n = 959). However, approximately one-third of the individuals exhibited a stable or increased TL over a decade. The individual telomere attrition rate was inversely correlated with initial TL at a highly significant level (r = –0.752, P<0.001), indicating that the attrition rate was most pronounced in individuals with long telomeres at baseline. In accordance, the age-associated telomere attrition rate was more prominent in families with members displaying longer telomeres at a young age (r = –0.691, P<0.001). Abnormal blood TL has been reported at diagnosis of various malignancies, but in the present study there was no association between individual telomere attrition rate or prediagnostic TL and later tumor development. The collected data strongly suggest a TL maintenance mechanism acting in vivo, providing protection of short telomeres as previously demonstrated in vitro. Our findings might challenge the hypothesis that individual TL can predict possible life span or later tumor development
- …