24 research outputs found

    An asymmetric shock wave in the 2006 outburst of the recurrent nova RS Ophiuchi

    Get PDF
    Nova outbursts take place in binary star systems comprising a white dwarf and either a low-mass Sun-like star or, as in the case of the recurrent nova RS Ophiuchi, a red giant. Although the cause of these outbursts is known to be thermonuclear explosion of matter transferred from the companion onto the surface of the white dwarf, models of the previous (1985) outburst of RS Ophiuchi failed to adequately fit the X-ray evolution and there was controversy over a single-epoch high-resolution radio image, which suggested that the remnant was bipolar rather than spherical as modelled. Here we report the detection of spatially resolved structure in RS Ophiuchi from two weeks after its 12 February 2006 outburst. We track an expanding shock wave as it sweeps through the red giant wind, producing a remnant similar to that of a type II supernova but evolving over months rather than millennia. As in supernova remnants, the radio emission is non-thermal (synchrotron emission), but asymmetries and multiple emission components clearly demonstrate that contrary to the assumptions of spherical symmetry in models of the 1985 explosion, the ejection is jet-like, collimated by the central binary whose orientation on the sky can be determined from these observations.Comment: 10 pages, 4 figures, accepted by Natur

    ALMA spectral survey of Supernova 1987A-molecular inventory, chemistry, dynamics and explosive nucleosynthesis

    Get PDF
    We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the Atacama Large Millimeter/submillimeter Array (ALMA) 210–300 and 340–360 GHz spectra, we detected cold (20–170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J = 6–5 and 5–4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh–Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of 28SiO/29SiO > 13, 28SiO/30SiO > 14 and 12CO/13CO > 21, with the most likely limits of 28SiO/29SiO >128, 28SiO/30SiO >189. Low 29Si and 30Si abundances in SN 1987A are consistent with nucleosynthesis models that show inefficient formation of neutron-rich isotopes in a low-metallicity environment, such as the Large Magellanic Cloud. The deduced large mass of HCO+ (∼5 × 10−6 M⊙) and small SiS mass (<6 × 10−5 M⊙) might be explained by some mixing of elements immediately after the explosion. The mixing might have caused some hydrogen from the envelope to sink into carbon- and oxygen-rich zones after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may have penetrated into silicon and sulphur zones, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive nucleosynthesis in supernovae

    LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: exploring the origin of nuclear radio emission in active and inactive galaxies through the [O iii] – radio connection

    Get PDF
    What determines the nuclear radio emission in local galaxies? To address this question, we combine optical [O III] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically complete sample of 280 nearby optically active (LINER and Seyfert) and inactive [H II and absorption line galaxies (ALGs)] galaxies. Using [O III] luminosity (⁠L[OIII]⁠) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical–radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores (Lcore) is found to scale with BH mass (MBH) and [O III] luminosity. Below MBH ∼ 106.5 M⊙, stellar processes from non-jetted H II galaxies dominate with Lcore∝M0.61±0.33BH and Lcore∝L0.79±0.30[OIII]⁠. Above MBH ∼ 106.5 M⊙, accretion-driven processes dominate with Lcore∝M1.5−1.65BH and Lcore∝L0.99−1.31[OIII] for active galaxies: radio-quiet/loud LINERs, Seyferts, and jetted H II galaxies always display (although low) signatures of radio-emitting BH activity, with L1.5GHz≳1019.8 W Hz−1 and MBH ≳ 107 M⊙, on a broad range of Eddington-scaled accretion rates (⁠m˙⁠). Radio-quiet and radio-loud LINERs are powered by low-m˙ discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-m˙ discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted H II galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. In conclusion, specific accretion–ejection states of active BHs determine the radio production and the optical classification of local active galaxies

    LeMMINGs: V. Nuclear activity and bulge properties: A detailed multi-component decomposition of e -MERLIN Palomar galaxies with HST*

    Get PDF
    We used high-resolution HST imaging and e-MERLIN 1.5-GHz observations of galaxy cores from the LeMMINGs survey to investigate the relation between optical structural properties and nuclear radio emission for a large sample of galaxies. We performed accurate, multi-component decompositions of new surface brightness profiles extracted from HST images for 163 LeMMINGs galaxies and fitted up to six galaxy components (e.g. bulges, discs, AGN, bars, rings, spiral arms, and nuclear star clusters) simultaneously with Sérsic and/or core-Sérsic models. By adding such decomposition data for ten LeMMINGs galaxies from our past work, the final sample of 173 nearby galaxies (102 Ss, 42 S0s, 23 Es, plus six Irr) with a typical bulge stellar mass of M∗,bulge ~ 106 -1012.5 M⊙ encompasses all optical spectral classes: low-ionisation nuclear emission-line region (LINER), Seyfert, Absorption Line Galaxy (ALG), and H′ ¯II. We show that the bulge mass can be significantly overestimated in many galaxies when components such as bars, rings, and spirals are not included in the fits. We additionally implemented a Monte Carlo method to determine errors on the bulge, disc, and other fitted structural parameters. Moving (in the opposite direction) across the Hubble sequence, that is from the irregular to elliptical galaxies, we confirm that bulges become larger, more prominent, and round. Such bulge dominance is associated with a brighter radio core luminosity. We also find that the radio detection fraction increases with bulge mass. At M∗,bulge ≫ 1011 M⊙, the radio detection fraction is 77%, declining to 24% for M∗,bulge < 1010 M⊙. Furthermore, we observe that core-Sérsic bulges tend to be systematically round and to possess high radio core luminosities and boxy-distorted or pure elliptical isophotes. However, there is no evidence for the previously alleged strong tendency of galaxies'central structures (i.e. a sharp Sérsic, core-Sérsic dichotomy) with their radio loudness, isophote shape, and flattening

    The Supermassive Black Hole at the Galactic Center

    Get PDF
    The inner few parsecs at the Galactic Center have come under intense scrutiny in recent years, in part due to the exciting broad-band observations of this region, but also because of the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics and unusual star formation. The Galactic Center is now known to contain arguably the most compelling supermassive black hole candidate, weighing in at a little over 2.6 million suns. Its interaction with the nearby environment, comprised of clusters of evolved and young stars, a molecular dusty ring, ionized gas streamers, diffuse hot gas, and a hypernova remnant, is providing a wealth of accretion phenomenology and high-energy processes for detailed modeling. In this review, we summarize the latest observational results, and focus on the physical interpretation of the most intriguing object in this region---the compact radio source Sgr A*, thought to be the radiative manifestation of the supermassive black hole.Comment: Annual Review of Astronomy & Astrophysics, Vol. 39 (2001), in press, 48 pages, 20 figures (partially in reduced quality), also available at http://www.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#gcrevie

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Supernova remnants: the X-ray perspective

    Get PDF
    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2 column-layout. 78 pages, 42 figures. This replaced version has some minor language edits and several references have been correcte

    LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: exploring the origin of nuclear radio emission in active and inactive galaxies through the [O III] - radio connection

    Get PDF
    What determines the nuclear radio emission in local galaxies? To address this question, we combine optical [O III] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically complete sample of 280 nearby optically active (LINER and Seyfert) and inactive [H II and absorption line galaxies (ALGs)] galaxies. Using [O III] luminosity (⁠L[OIII]⁠) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical–radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores (Lcore) is found to scale with BH mass (MBH) and [O III] luminosity. Below MBH ∼ 106.5 M⊙, stellar processes from non-jetted H II galaxies dominate with Lcore∝M0.61±0.33BH and Lcore∝L0.79±0.30[OIII]⁠. Above MBH ∼ 106.5 M⊙, accretion-driven processes dominate with Lcore∝M1.5−1.65BH and Lcore∝L0.99−1.31[OIII] for active galaxies: radio-quiet/loud LINERs, Seyferts, and jetted H II galaxies always display (although low) signatures of radio-emitting BH activity, with L1.5GHz≳1019.8 W Hz−1 and MBH ≳ 107 M⊙, on a broad range of Eddington-scaled accretion rates (⁠m˙⁠). Radio-quiet and radio-loud LINERs are powered by low-m˙ discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-m˙ discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted H II galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. In conclusion, specific accretion–ejection states of active BHs determine the radio production and the optical classification of local active galaxies

    High Precision Differential Astrometry in Large Angular Separation Pairs of Radiosources

    No full text
    corecore