220 research outputs found

    Unidirectional Photonic Reflector Using a Defective Atomic Lattice

    Full text link
    Based on the broken spatial symmetry, we propose a novel scheme for engineering a unidirectional photonic reflector using a one-dimensional atomic lattice with defective cells that have been specifically designed to be vacant. By trapping three-level atoms and driving them into the regime of electromagnetically induced transparency, and through the skillful design of the number and position of vacant cells in the lattice, numerical simulations demonstrate that a broad and high unidirectional reflection region can be realized within EIT window. This proposed unidirectional reflector scheme provides a new platform for achieving optical nonreciprocity and has potential applications for designing optical circuits and devices of nonreciprocity at extremely low energy levels

    High-mobility-group box protein 1 A box reduces development of sodium laurate-induced thromboangiitis obliterans in rats

    Get PDF
    ObjectiveHigh-mobility-group box protein 1 (HMGB1), as a late mediator of inflammation, plays a key role in inflammatory responses by inducing and extending the production of proinflammatory cytokines. The effect of HGMB1 in the inflammatory disease thromboangiitis obliterans (TAO) is unknown. We aimed to investigate the role of HMGB1 in sodium laurate-induced TAO in rats.MethodsMale Wistar rats were randomly divided into five groups (n = 8 each) for treatment: normal, sham-operated, TAO model, and low-dose (15 mg/kg) or high-dose (30 mg/kg) recombinant A box (rA box) infection (administered intraperitoneally once daily for 15 days). The TAO model was induced by sodium laurate and graded by gross appearance on day 15 after femoral artery injection. Histologic changes were measured by histopathology in rat femoral arteries. Plasma levels of HMGB1, thromboxane B2, 6-keto-prostaglandin F1-α, and blood cell counts and blood coagulation levels were measured. Expression of HMGB1, receptor for advanced glycation end-products (RAGE), interleukin-6, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 was assessed by immunohistochemistry and immunofluorescence, Western blot analysis, and quantitative reverse-transcription polymerase chain reaction.ResultsThe typical signs and symptoms of TAO were observed on day 15 after sodium laurate injection. The expression of HMGB1, RAGE, interleukin-6, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 was markedly increased in rat femoral arteries. Plasma levels of HMGB1 and thromboxane B2 were elevated, but the level of 6-keto-prostaglandin F1-α was decreased. Blood was in a hypercoagulable state, and prothrombin, thrombin, and activated partial thromboplastin times were all significantly shortened, whereas fibrinogen level was increased in TAO rats compared with sham-operated rats. These effects were terminated by the HMGB1 antagonist rA box.ConclusionsHMGB1 is involved in the inflammatory state in a model of TAO induced by sodium laurate in rats, probably via its receptor RAGE. As the antagonist of HMGB1, rA box can attenuate the development of TAO, which may be a potential therapeutic target for the treatment of TAO.Clinical RelevanceThromboangiitis obliterans (TAO), or Buerger disease, is a segmental nonatherosclerotic inflammatory disorder. Patients with Buerger disease have a lower quality of life because of intermittent claudication, rest pain, ulcers, and superficial thrombophlebitis. The specific etiology and pathologic mechanisms remain not elucidated. High-mobility-group box protein 1, as a late mediator of inflammation, plays a key role in inflammatory responses to tissue injury and infection by inducing and extending the production of proinflammatory cytokines. Here, we explored the role of high-mobility-group box protein 1 in rat model of TAO, discovering a new damage marker in TAO. We also investigated the unique role of recombinant A box in the prevention and treatment of TAO

    Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China

    Get PDF
    Spanning the Yangtze River of China, the Three Gorges Dam (TGD) has received considerable concern worldwide with its potential impacts on the downstream side of the dam. This work investigated the spatio-temporal variations of suspended sediment concentration (SSC) at the downstream section of Yichang-to-Chenglingji from 2002 to 2015. A random forest model was developed to estimate SSC using MODIS ground reflectance products, and the spatio-temporal distributions of SSC were retrieved with this model to investigate the characteristics of water-silt variation. Our results revealed that, relatively, SSC before 2003 was evenly distributed in the downstream Yangtze River, while this spatial distribution pattern changed ce 2003 when the dam started storing water. Temporally, the SSC demonstrated a W-shaped curve of seasonal variation as one peak occurred in September and two troughs in March and November, and showed a significantly decreasing trend after three-stage impoundment. After official operation of the TGD in 2009, the SSC was reduced by over 40% than before 2003. Spatially, the most significant changes occurred in the upper Jingjiang section, where the SSC dropped by 45%. During all stages of impoundment, the water impoundment to 135 m in 2003 had the most significant impact on suspended sediment. The decreased SSC has led to emerging risks of bank failure, aggravated erosion of water front and aggressive down-cutting erosion along the downstream of the dam, as well as other ecological and environmental issues that require urgent attention by the government

    Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    Get PDF
    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better

    Bio-oil based biorefinery strategy for the production of succinic acid

    Get PDF
    Background: Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated

    PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in <i>Escherichia coli</i>

    Get PDF
    Efficiency and fidelity are the key obstacles for genome editing toolboxes. In the present study, a PCR-based tandem repeat assisted genome editing (TRAGE) method with high efficiency and fidelity was developed. The design of TRAGE is based on the mechanism of repair of spontaneous double-strand breakage (DSB) via replication fork reactivation. First, cat-sacB cassette flanked by tandem repeat sequence was integrated into target site in chromosome assisted by Red enzymes. Then, for the excision of the cat-sacB cassette, only subculturing is needed. The developed method was successfully applied for seamlessly deleting, substituting and inserting targeted genes using PCR products. The effects of different manipulations including sucrose addition time, subculture times in LB with sucrose and stages of inoculation on the efficiency were investigated. With our recommended procedure, seamless excision of cat-sacB cassette can be realized in 48 h efficiently. We believe that the developed method has great potential for seamless genome editing in E. coli

    Associations between maternal urinary kisspeptin in late pregnancy and decreased fetal growth: a pregnancy-birth cohort study

    Get PDF
    BackgroundKisspeptin has been indicated to be a biomarker of fetal growth. Although some evidence suggested that maternal kisspeptin concentrations in early pregnancy were associated with increased fetal growth, studies are still limited and the effect of kisspeptin in late pregnancy remains unknown. This study aimed to investigate the associations between maternal kisspeptin in late pregnancy and fetal growth.MethodsBased on the Shanghai-Minhang Birth Cohort study, 724 mother-neonate pairs were included in this study. We measured maternal kisspeptin concentrations in the urine samples collected in late pregnancy and neonatal anthropometric indices at birth. The associations between maternal kisspeptin and neonatal anthropometry were investigated using multiple linear regression models.ResultsHigher maternal urinary kisspeptin concentrations were associated with lower neonatal birth weight, head circumference, upper arm circumference, abdominal skinfold thickness, triceps skinfold thickness, and back skinfold thickness. The inverse associations were more pronounced for the highest kisspeptin levels versus the lowest. These patterns were consistent in analyses stratified by neonatal sex, with notably stable associations between maternal kisspeptin concentrations and skinfold thickness.ConclusionThe present study suggested that maternal kisspeptin concentrations in late pregnancy might be inversely associated with fetal growth. The physiological mechanisms of maternal kisspeptin might differ from those in early pregnancy. Further studies are required to assess associations between maternal kisspeptin and energy homeostasis and explore the physiological roles of kisspeptin in late pregnancy
    corecore