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In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing
cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks
(CNNg), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization
problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental
results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit
heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is
affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to

be performed better.

1. Introduction

Cloud computing provides ability to dynamically scale or
shrink the provisioned resources as per the dynamic require-
ments [1]. It is elastic in nature and works on pay as its
clients use model. Virtualization as a key concept of cloud
computing gives an abstract view of hardware by means of
multiple virtual guest operating systems which are known
as Virtual machines (VMs) and are instanced on a single
physical machine (PM). That is, depending on the capacity
of the PM, many VMs can be created on it. It is also
clear that the proper management of VMs can improve the
resource utilization efficiently and carry out the isolation
to multitenancy. Virtual machine monitor (VMM), which
is also known as hypervisor, is simply a software and can
be used as an interface between PM and VMs. One of the
widely used VMM is Xen which allows various VMs to share
common hardware in a safe and resource managed condition
but without sacrificing the performance [2].

VM migration is a key enabler for dynamic resource
management in cloud-based systems. Live VM migration as

an extremely powerful tool for the cloud managers transfers
state of a VM from one PM to another and can mitigate
overload conditions and enables uninterrupted maintenance
activities. In the migration process, complete state of running
VM, which includes the permanent storage (i.e., the disk
image), volatile storage (the memory), the state of connected
devices (such as network interface card), and the internal state
of the virtual CPU (VCPU), has to be transferred [2]. In this
case, VM locations are varied dynamically and the internal
state of the VCPU and connected devices are a few kilobytes
of data and can be easily sent to the VMM and the target
PM. For these reasons, it is clear that VMs can be migrated
from overloaded PM to underloaded PM, but it will be only
helpful when the efficient live migration techniques are used.
Thus, we need an approach to trace and detect the processes
migration in VM and mapping relationship between VCPUs
and PM from the hypervisor’s point of view, in order to
verify whether the new scheduler is effective and the result
is consistent with the initial idea.

Therefore, to meet the demands of processing
time-saving, a lightweight algorithm of live VM migration



detection (VMMD) based on cellular neural network
(CNN) is proposed in this paper. CNN has features with
multidimensional array of neurons and realizable paradigm
of parallel computation; the processing time is unrelated
with the data dimension. Moreover, it can be implemented
by very large scale integration (VLSI), which makes neural
networks easily implemented [3]. Therefore, it has been
widely used in many fields [3-7], such as the classification
and recognition of moving targets [4, 5], path detection of
mazes [6], and microarray image reconstruction [7]. To the
best of our knowledge, few reports have been published on
the application in live VM migration detection.

The rest of this paper is organized as follows. Section 2
provides an overview of the most adopted VM migration
techniques. In Section 3, the proposed algorithm of live
VMMD based on CNN is discussed. Section 4 explains the
details for designing CNN parameters via bubble sort particle
swarm optimization (BSPSO) algorithm. After that, Section 5
presents the experimental results, followed by the conclusions
in Section 6.

2. Related Works

In the proposed VM migration policy, VM migration is
triggered when the data transfer time crosses a certain
threshold due to the unstable network. Here, the threshold
can be determined by a time-related service level agreement
(SLA) between the cloud facility provider and the cloud
user [8]. To solve the problem of host overload detec-
tion, a novel approach based on a Markov chain model
is proposed by maximizing the mean intermigration time
under the specified quality of service (QoS) goal [9]. In
[10, 11], migration strategies are generally based on the CPU
utilization, and when CPU utilization of a host exceeds a
certain threshold, tasks implementing on the VM with the
highest CPU utilization on the host will be migrated out.
These strategies are generally lack of resources sensitivity and
can not realize the dynamic resource allocation according to
the actual conditions of the load.

In [12], Celesti et al. propose a composed image cloning
(CIC) methodology able to reduce the cost of the VM
disk-image relocation over a WAN. In [13], a new live VM
migration strategy is proposed by using the load character-
istics to implement hotspots detection, selection of VM, and
migration destination host according to some multithreshold
patterns. Srikantaiah models the migration problem as a
modified bin packing problem in [14]. Firstly, the optimal
point is determined from profiling data. Then, the heuristic
algorithm is used to maximize the sum of the Euclidean
distances of the current allocations to the optimal point at
each server. Luo et al. [15] propose an advanced VM dynamic
consolidation system through live migration approach. The
system consists of three main components: load monitor
which collects resources usage statistics from each server
node, relocation planner which calculates the relocation plan
by analyzing the resource usage histories, and VM controller
which activates live migration to server nodes according to
the results from relocation planner. In [16], Li et al. propose
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a live migration strategy for VM, which combines with
performance predicting algorithm. According to the average
utilization of the CPU, memory, I/O, and network bandwidth,
the proposed strategy makes a serial of judgments about
migration, such as whether a migration is triggered, what
VM should be migrated, and where is the destination PM of
the VM. But these existing researches are generally heuristic
based or heavily rely on statistical analysis of historical data;
thus, the optimization procedure has to be conducted after a
relatively long period to obtain statistics.

To trace the migration process in VM, Zhang et al.
[17] present a demo process migration tracing engine for
monitoring the migration of process on VCPUs and VCPUs
on the cores of physical processor based on Linux 2.6 and Xen
3.2.In [18], Liu et al. design a novel approach CR/TR-Motion
that adopts recovery and trace technology to provide fast,
transparent VM migration. With execution trace logged on
the source PM, a synchronization algorithm is performed to
orchestrate the running source and target VM until they get
a consistent state. According to the above issue, it is clear that
it is important for the proper management of virtualization
resources information and security events, monitoring and
analysis of VM situations, and migration policies. Therefore,
we study the tracing method for history of infected VMs
following the analysis of the VM migration lifecycle status
and running states.

3. The Processing of VMMD Based on CNN

CNN is a large scale nonlinear locally connected analog
circuit which processes signal in real time that was first
proposed by the Professor Chua and Dr. Yang who came from
the University of California in 1988 [3]. A CNN is composed
of basic processing units called cells. Each cell, denoted by
c(i, j), is connected to its neighboring ones; therefore, only
the adjacent cells can directly connect with each other, others
interaction are through dynamic continuous propagation
effects. Each cell has the same structure, composed by a small
amount of linear and nonlinear circuit elements.

The circuit equations of a cell which satisfy the KCL and
KVL are easily derived as follows.

State equation is

dav,;: (t
C—J) = —lv

At - R xij (t) + Z
c(k)eN, (i,f)
)

c(k.)eN, (ij)

A (1, ], k, l) Vykl (t)

@
B(i, jik, ) vy (1) + L.

Output equation is

1 ® = £ () = 2 (g © +1] - g 0 1)) @
Constraint conditions are
@] <1 [y ©@f <1, ®

where 1 < i < M,1 < j < N. The dynamics of a CNN
has both output feedback and input control mechanisms. The
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dx, ;/dt

(a) The trajectory of Local Rule 1

FIGURE 1: The dynamic trajectory of cell for different local rules.

output feedback effect depends on the interactive parameter
A(i, j; k,I) and the input control effect depends on B(j, j; k, I).
The key of CNN-based solution is to design the appropriate
parameters of the feedback matrix A and control matrix B
which represent the connection weight between cells.

Virtualization provides virtualized view of resources used
to instantiate VMs. Once a VM is instantiated, a resource
monitoring engine which is called VMM or hypervisor
will track the resource usage and performance indicators
related to the applications of the VM; it also manages and
multiplexes access to the physical resources, maintaining
isolation between VMs at all times.

Let VM, = vm Uvm’ U---vm" denote the static state
matrix of VM numbered #n, composed of the union of m
continue time state components vm;, vmfl, ...and vm;”. The
allocation matrix of VM P, = {Py;,..., P, ;,..., B} can be
divided into the state set of VM V' = {VM,,..., VM;} and
physical host (PH) H = {H,,..., H}, ifa VM numbered v is
allocated into the host named h, P, = 1; otherwise, P,, = —1.
Any allocate solutions must meet the capacity constraints of
PHs as follows:

1
Vhe{l,...,n} Y PB,xCPU(V,)<CPU(H,),
v=1

(4)

1
Vhe{l,...,n} Y P, xMem(V,) < Mem(H,),

v=1

where the idle host will be closed to save energy.

Let VM, denote the VMM which is called triggering cells,
and let VM’ = VM \ VM, as the initial state denote the
remainder pattern, to be deleted from VM. VM’ is applied
as input to the global state detection of VM by the cloning
templates given by (5) [3]. Since VM' € VM, each state
of VM at the initial time ¢ = 0 can assume the three

combinations of (input, initial state) = (1, ;, x; ;(0)); namely,

3
dx;;/dt
(b) The trajectory of Local Rule 2
(VMsuspend’VMsuspend) = (_1>_1)> (VMcopy’ VMsuspend) =
(1,-1), (VMopy> VMgpy) = (1, 1). Consider
0 <0 0 -< 0
2 2
aole s e P B
2 c 2| 2 c 2 (5)
0 =0 0O —— 0
2 2

Z =2z,

where a, b, ¢, and z are real numbers and ¢ > 0.

The steady state output y; ;(co) of each cell P, ; belonging
to any connected component obeys two static local rules and
one dynamic global rule.

Local Rule1.Ifz < a+b -1, (ui)j,xi)j(())) = (-1,-1), thus
¥;,j(00) = -1, independent of (u,, x;,(0)) of its neighbors
states.

Local Rule 2.1fz > 1 - a - b, (u;;,x;;(0)) = (1,-1), thus
;,j(00) = 1, independent of (u,, x,(0)) of its neighbors
states.

Proof. Consider

C
+ - Z [yi+k,j+r (t) - ui+k,j+r (t)] +z (6)
2(k,r)€1

= =x;; (8) +ay,; () +w;; (1),

wherei=1,2,...,I,j=1,2,...,s.

Assume that the parameters satisfy a > 1/R, = 1,
and then each cell of the CNN must settle at a stable
equilibrium point after the transient has decayed to zero, and
lim, _, ,v,);(f) = £1,1 <i < M, 1 < j < N guarantee that
our CNNs have binary-value outputs. This property is very
important for detection problems in live VM migration.

(i) If (u; > xi)j(O)) = (-1,-1), in order to guarantee Local
Rule 1 to be hold, yi)j(oo) = —1. From Figure 1(a), x;,]. <0,



dx, ;/dt

FIGURE 2: The dynamic trajectory of cell for global rule.

the dynamic trajectory of cell P, ; must tend to an equilibrium
Q, = -1, and the following inequality must be satisfied.
Thus,

1—a+wi,j(t) <0,
(7)

z<a+b-1.

(ii) If (u,J, »,j(O)) = (1,-1), in order to guarantee Local
Rule 2 to be hold, ¥;,j(00) = 1. From Figure 1(b), x; =0
and the dynamic route of cell P, ; is not below the curve with

= 1 — a and finally tends to an equilibrium P, = 1; the
followmg inequality must be satisfied:

a-1l+w;(t)=0. (8)

Thus,
z>1-a-b. ©))
O

Global Rule. If z > —a — b — 2c - 1, (ui)j, xi)j(O)) = (1,1),
and there exists an adjacent triggering cell or a directional
connected path defined by I from cell P, ; to some marked cell
P+, ¥ (00) = 1. Otherwise, z < 1-a—b+2c, y; j(c0) = —

Proof. If there exists a directional connected path from

cell P,; to some marked cell P;. ;., then there exists some

connected path from cell P ; to some cell Py i and there is at

least one adjacent triggerlng cell Py ; connected to cell P

(u; j, x; ;(0)) = (1, 1) and y; ;(c0) =
Thus,

]‘ >
—1 In this case, xl’] > 0.

l+a+uw;(t) >0, (10)
z>-a-b-2c-1. 1)

If there neither exit an adjacent triggering cell or a
directional connected path defined by I from cell P, ; to
some marked cell Py o5 (w5, x;;(0)) = (1,1). The dynamic
trajectory of cell must tend to an equilibrium P, indicated in
Figure 2; that is, x; ; < 0.

The Scientific World Journal

Hence,
l+a+uw; (t) <0, (12)
z<-l—-a-b+2c (13)

If (11) and (13) are satisfied, then the global rule holds. In
summary, we complete the proof of Local Rules 1 and 2 and
global rule. O

4. The Design of CNN Template Parameters
Based on BSPSO Algorithm

CNN is a typical nonlinear dynamic system with ability of
optimization. The Lyapunov function, E(t), of a CNN by the
scalar function is defined as follows:

B =Y 3 4G k) vy 07,0 ©

@i, j) (D)

ZR Zvyl](t) Z ZB (l ]’k l yz] (t) Vuki

* (i,) (i,7) (k1)
=Y Zvy; (t)
(i)
(14)
where 1 < i,k < M;1 < j, I < N.Anditisa

monotone decreasing function, always converges to a local
minimum, where the CNN produces the desired output.
Thus, the detected problem of live VM migration based on
CNN can be changed into constrained optimization problem
(COP) as follows:

OEcnn (1)

min - — = = —x; (0 + Y Ay ®)
KIEN, (1)
(15)
Y Bty + Zi
k,leNi’j(r)
z<a+b-1
> p— —
st z>1-a-b (16)

z>-a-b-2c-1
z<-1-a-b+2c

Most existing algorithms for COP use the penalty func-
tion method to handle constrains, which depends strongly
on the penalty parameter [19, 20]. PSO as a global search
optimization algorithm has been widely used in COP [21].
The algorithm was inspired by the social behavior of a flock
of birds when searching for food. The potential solutions are
denoted as particles, fly in the search space exploring for
better regions. In PSO, each particle has a current position
and a velocity and the particle finds the best solution through
exchanges information with other experienced particles.

Assume that a swarm P(k) is composed of N particles in
the D-dimensional solution space, where the position vector
of particleiis X; = (x;;, X;p, .- .» X;5) and V; = (v;1, Vi, . . . Vig)
denotes the velocity vector. P, = (p;;, Pi>---»> Pig) is the
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optimal solution vector experienced, that is, the best fitness
solution py found by particle i. In other words, P, =
(Pg1> Pg2s---» Pga) denotes the best fitness solution gy
found by all of particles. The velocity and position update
equations of each particle are shown as follows:

Vit+1) = wxVi(t)+¢ %7 % (Ppess — Vi ()

+Gxry (gbest _Vi(t))’ (17)
X,t+)=X,t)+V;(t+1),

where i = 1,2,...,d. The inertia weight w is a factor used to
control the balance of the search algorithm exploitation. The
acceleration coefficient ¢; moderates the maximum step size
toward the global best particle, while another coeflicient ¢,
moderates the step size toward the best personal position of
that particle. They are bounded by 0 < ¢, ¢, < 2.7, and r,
are random value in the range of [0, 1] and usually selected its
range artificially to reduce the probability that V;(¢) and X;(t)
escape from the search space.

There are no selection, crossover, and mutation opera-
tions to train the parameters of neural network by using
PSO. The algorithm is simple, quick convergence, and the
training precision is high, but, when a particle finds the
local optimal solution, it will stop searching in the solution
space, while other particles will quickly move closer to this
particle; therefore, the algorithm is easy to fall into premature
convergence. In addition, when the algorithm gets into a
local optimum, an infeasible solution replacing mechanism
is given to improve the search capability in this paper.

The basic idea of the proposed algorithm was to put
feasible solutions and infeasible solutions into two different
containers, respectively. Let G;, = {x;,%,,...,x,,} denote
the set of feasible solution, and the set of infeasible solution
is Gigs = {¥1> V2> Vo}» Where nl + n2 = N. F(x) and
Fi(y) are the fitness function of G, and Gy, respectively.
Considering that the global optimal solutions often locate
on or near the boundary of the feasible region for many
COPs, we choose some better solutions in G, based on
bubble sort algorithm (BS) and add to G, in order to improve
the searching ability. According to this, the value of F(x)
should be sorted from small to large based on BS algorithm;
that is, after BS processing, in the ordered set of feasible
solution G;S = {x;, x;, . x:ll}, xi is the best fitness solution.
Similarly, y| is the best fitness solution in Gi,.

In the sort processing, the competitive choice follows
these rules:

(1) any feasible solution is better than the infeasible
solution;

(2) in two feasible solutions, it gets ahead whose value of
Fg(x) is superior;

(3) in two infeasible solutions, smaller degree of Fy¢(y) is
superior.

The processing of improved PSO based on BS algorithm
is given as follows.

Step 1. In accordance with the restraint condition, the parti-
cles’ velocity and position are to be initialized. Iteration time
(IT)IT = 1.

Step 2. For each particle, calculate the current value of the
fitness function F(x) from the formula (15).

Step 3. Compare F(x) which is current experienced with the
best fitness function py., and if current F(x) is smaller than
F(ppest)> the particle will be set to Gy, and become the new
Prest- Otherwise, the particle will be set to Gig,. Then, IT =
IT + 1.

Step 4. Update the velocity and position of the particles
according to formulas (5) and (6).

Step 5. After n times of iteration, obtain some superior
particles in G, according to Fi(y) and BS algorithm.

Step 6. Put the choosing particles into G, and get the best
fitness function g, of current globally experienced in Gg,
based on BS algorithm.

Step 7. Determine whether the algorithm met the rule of
iteration times, if it satisfied the condition then go to Step 8;
otherwise, return to Step 2.

Step 8. Output the value of parameters a, b, ¢, and z.

The flow diagram of BSPSO is as Figure 3.

5. The Simulation Results and Analysis

In this Section, we first introduce the performances of our
BSPSO algorithm for the design of CNN template parameters,
including the ability to get the template solution and the
comparison results with GA, PSO BSPSO, and sort algorithm.
Then, the performance of our VMMD model based on CNN
algorithm is evaluated, such as the effects of VMMD model
on migration lifecycle and the comparison results with other
published existing algorithms.

5.1. The Experimentation Results of BSPSO Algorithm. In our
study, we use MATLAB 7.6.0 software on the PC of 2G
memory to carry out this simulation experiments. In order
to ensure stability and convergence of the BSPSO algorithm,
accelerating factors ¢; and ¢, are made to 1.49, inertia factor
is equal to 0.729, r; and r, are the random number in
the interval [0, 1], the initial state inj(o) and vyl-j(O) of the
randomly selected center cells are set to —1, other parameters
C = 107°F, R, = 1Q, and the maximum iterations is 2000
times. Finally, the algorithm gets the template solution as
follows:

0 064 O 0 -064 O
A=1064 632 0.64 ], B=|(-0.64 219 -0.64|,
0 064 O 0 -064 O
Z =-7.36.
(18)
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[nitialize the particles’ velocity|
and position

l

Calculate F(x)

Update the particles’ velocity
and position

F(pbest )

No
Gifs

Obtain superior particles
based on BS

Output the value of parameters
a,b,c,and z

FIGURE 3: Flow diagram of BSPSO.

Fitness variance

Iterations x10
—*— BSPSO — GA
--= PSO —<+— SORT

FIGURE 4: Simulation result of the optimal solution efficiency.

Then, we optimize the template parameter by using
GA, PSO, BSPSO, and sort algorithm. In order to analyze
the superiority of the proposed algorithm quantitatively, we
define an evaluation criteria formula as (19) by using the
number of iterations and fitness variance

(fi_favg>

where f is a normalization factor and can be taken as
arbitrary values. f; represents the fitness of the particle whose

n

)

i=1

(19)

—— PHI1
—e— PH2
—— PH3

FIGURE 5: The sum of CPU percentage usage of VMs on each PH.

number isi, and f,,, denotes the average fitness of the particle
swarm. The simulation result of the quantitative evaluation of
the optimal solution efficiency is shown in Figure 4.

As depicted in Figure 4, the convergence speed of GA-
based parameter optimization algorithm is faster than that
of sort-based algorithm, and the performance of convergence
speed of PSO algorithm is better than GA, but when the PSO
algorithm finds a local optimal solution, it stops doing the
searching, and sinks into the state of premature convergence.
In the meantime, by adding the BS operating, the BSPSO
model is slower than PSO in the first period of time, but it can
jump out of the premature convergence and find the global
optimum eventually.

5.2. The Experimentation Results of VMMD Based on CNN.
This experimental environment contains four PHs, each host
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PH

3—\
2 = 1% H—eH X © T—-
IJ =) =) =) =

32 34 36 38 40 42 44
t(s)

= VM2
-©— VM3

(a) The result of VMMD from 32 s to 44 s

PH

1552 1554 1556 1558 1560 1562 1564
t(s)

- VM2
-©- VM3

(b) The result of VMMD from 1552 s to 1564 s

FIGURE 6: The result of VMMD based on CNN in different times.
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Total processing time (s)
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Idle

S »

Httperf RUBIS UnixBench

B Our approach
[ BFH algorithm

FIGURE 7: Total processing time of VMMD for different workloads.

consists of Intel (R) Core (TM) 2Duo E8400@ 3.0 GHz, 16 GB
memory and is divided into a number of VMs with different
configurations. The PH4 acts as VMM and connected with
PH]I, 2, and 3 with NFS server by 1 Gbps network bandwidth
line. The virtualization software is Xen4.1.2 based on Linux
platform.

By “top” order, we obtain the extent of access to a resource,
such as memory allocated or CPU allocated to a VM. In 35
minutes, the CPU percentage use of PHs is shown in Figure 5
and when the sum of CPU percentage use of VMs on each PH
exceeds 100%, like PH1and PH2, the VMs instantiated on that
PH will migrate to other PMs because of the violation of SLA.

By “public Map adjust VM Position (String umid)/+@
param VM Name” order, we choose three VMs instantiated
on different PH which are running EPA-HTTP benchmark
tests, and the migration detection process based on CNN is
shown in Figure 6.

As depicted in Figure 6(a), in the first period time, the
state (memory pages) of VM3 is transferred from PHI to

PH2, and then the memory pages of VM1 migrate from PH3
to PH2; that is, VM1 and VM3 will suspend; they copy all
its pages and then resume the VMs on the target machine
PH2. The migration downtime is proportional to the size of
the VMs and network resources available for state transfer.
When the physical resources can not satisfy the need of VMs
executed on PH2, each of which is self-contained with its
own operating system, the targets of VM2 and VM3 will
transfer from PH2 to PHI in order and meet the sequence
constraints. Similarly, Figure 6(b) also verifies the live VM
migration policy satisfying the sequence constraints and SLA.
The new PM can be added to offset the load of overloaded PM
by migrating VM2 from PH3 to PHI. Likewise, hosting new
VMs may result in future overloads of PHI, which will cause
the migration requires to be triggered.

Figure 7 shows the total processing time of VMMD
between our approach and traditional best fit heuristic
algorithm (BFH) [22] for different workloads in 30 minutes.
Compared with BFH algorithm, our approach reduced the
processing time by 36.78%, 22.1%, 30.86%, and 26.48%
for the workload of dynamic application (Idle, Httperf,
RUBIS, and UnixBench), respectively. The reason is that the
migration policy based on BFH should determine when a
PH is considered being underloaded; hence, it becomes a
good candidate for hosting VMs that are being migrated
from overloaded PHs, that cause the migration downtime
of dynamic application to be extremely long. Whereas our
detection approach only executes iterations to perform the
process of the suspending and copy phase, it is a feasible
method with satisfying lightweight performance and global
live monitoring advantage.

6. Conclusions
In this paper, we have proposed a live VMMD model based

on CNN, which can monitor the security of target operating
systems and it also provides the ability to inspect the VMs’



state. The migration procedure can be emerged as locally
connected, nonlinear processor arrays, while the outputs
reach their steady state values at an equilibrium point which
represents a desirable feature in view of VLSI hardware imple-
mentations of real time networks. On the basis of analyzing
the Local Rules 1 and 2 and the global rule, the parameter
relationship can be mapped as a COP. Then, BSPSO algorithm
has been designed to find out better optimum, avoiding the
PSO algorithm trapping into local optimum. Experiments are
carried out to demonstrate the performance of the proposed
model, and the comparative results show that the proposed
model exhibits superior performance with shorter processing
time compared with BFH algorithm.
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