1,524 research outputs found

    The Bosch Process-Performance of a Developmental Reactor and Experimental Evaluation of Alternative Catalysts

    Get PDF
    Bosch-based reactors have been in development at NASA since the 1960's. Traditional operation involves the reduction of carbon dioxide with hydrogen over a steel wool catalyst to produce water and solid carbon. While the system is capable of completely closing the loop on oxygen and hydrogen for Atmosphere Revitalization, steel wool requires a reaction temperature of 650C or higher for optimum performance. The single pass efficiency of the reaction over steel wool has been shown to be less than 10% resulting in a high recycle stream. Finally, the formation of solid carbon on steel wool ultimately fouls the catalyst necessitating catalyst resupply. These factors result in high mass, volume and power demands for a Bosch system. Interplanetary transportation and surface exploration missions of the moon, Mars, and near-earth objects will require higher levels of loop closure than current technology cannot provide. A Bosch system can provide the level of loop closure necessary for these long-term missions if mass, volume, and power can be kept low. The keys to improving the Bosch system lie in reactor and catalyst development. In 2009, the National Aeronautics and Space Administration refurbished a circa 1980's developmental Bosch reactor and built a sub-scale Bosch Catalyst Test Stand for the purpose of reactor and catalyst development. This paper describes the baseline performance of two commercially available steel wool catalysts as compared to performance reported in the 1960's and 80's. Additionally, the results of sub-scale testing of alternative Bosch catalysts, including nickel- and cobalt-based catalysts, are discussed

    Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Get PDF
    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing

    Evaluation of Bosch-Based Systems Using Non-Traditional Catalysts at Reduced Temperatures

    Get PDF
    Oxygen and water resupply make open loop atmosphere revitalization (AR) systems unfavorable for long-term missions beyond low Earth orbit. Crucial to closing the AR loop are carbon dioxide reduction systems with low mass and volume, minimal power requirements, and minimal consumables. For this purpose, NASA is exploring using Bosch-based systems. The Bosch process is favorable over state-of-the-art Sabatier-based processes due to complete loop closure. However, traditional operation of the Bosch required high reaction temperatures, high recycle rates, and significant consumables in the form of catalyst resupply due to carbon fouling. A number of configurations have been proposed for next-generation Bosch systems. First, alternative catalysts (catalysts other than steel wool) can be used in a traditional single-stage Bosch reactor to improve reaction kinetics and increase carbon packing density. Second, the Bosch reactor may be split into separate stages wherein the first reactor stage is dedicated to carbon monoxide and water formation via the reverse water-gas shift reaction and the second reactor stage is dedicated to carbon formation. A series system will enable maximum efficiency of both steps of the Bosch reaction, resulting in optimized operation and maximum carbon formation rate. This paper details the results of testing of both single-stage and two-stage Bosch systems with alternative catalysts at reduced temperatures. These results are compared to a traditional Bosch system operated with a steel wool catalyst

    Measuring practice leadership in supported accommodation services for people with intellectual disability: Comparing staff-rated and observational measures

    Get PDF
    Background Studies incorporating staff-rated or observational measures of practice leadership have shown that where practice leadership is stronger, active support is better implemented. The study aim was to compare measures of practice leadership used in previous research to determine the extent of their correspondence. Method A subset of data from a longitudinal study regarding 29 front-line managers working across 36 supported accommodation services in Australia was used. An observed measure of practice leadership, based on an interview and observation of a front-line manager, was compared with ratings of practice leadership completed by staff. The quality of active support was rated after a 2-hour structured observation. Results Correlations between staff-rated and observed measures were non-significant. Only the observed measure was correlated with the quality of active support. Conclusions This study provides evidence to support using an observational measure of practice leadership rather than reliance on staff ratings

    Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Get PDF
    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these "oxygenated" compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testin

    Series Bosch System Development

    Get PDF
    State-of-the-art (SOA) carbon dioxide (CO2) reduction technology for the International Space Station produces methane as a byproduct. This methane is subsequently vented overboard. The associated loss of hydrogen ultimately reduces the mass of oxygen that can be recovered from CO2 in a closed-loop life support system. As an alternative to SOA CO2 reduction technology, NASA is exploring a Series-Bosch system capable of reducing CO2 with hydrogen to form water and solid carbon. This results in 100% theoretical recovery of oxygen from metabolic CO2. In the past, Bosch-based technology did not trade favorably against SOA technology due to a high power demand, low reaction efficiencies, concerns with carbon containment, and large resupply requirements necessary to replace expended catalyst cartridges. An alternative approach to Bosch technology, labeled "Series-Bosch," employs a new system design with optimized multi-stage reactors and a membrane-based separation and recycle capability. Multi-physics modeling of the first stage reactor, along with chemical process modeling of the integrated system, has resulted in a design with potential to trade significantly better than previous Bosch technology. The modeling process and resulting system architecture selection are discussed

    Exercise metabolism in non-obese patients with type 2 diabetes following the acute restoration of normoglycaemia

    Get PDF
    This study investigated how acute restoration of normoglycaemia affected energy metabolism during exercise in nonobese patients with type 2 diabetes. Six subjects (mean ± SEM) aged 56.2 ± 2.7 years, with a BMI of 24.5 ± 1.5 kg/m2 and a VO2 peak of 28.7 ml/kg/min, attended the lab on two randomised occasions for a four-hour resting infusion of insulin or saline, followed by 30 minutes cycling at 50% VO2 peak. During the 4 h resting infusion, there was a greater (P < 0 0001) reduction in blood glucose in insulin treatment (INS) (from 11.2 ± 0.6 to 5.6 ± 0.1 mmol/l) than in saline treatment/control (CON) (from 11.5 ± 0.7 to 8.5 ± 0.6 mmol/l). This was associated with a lower (P < 0 05) resting metabolic rate in INS (3.87 ± 0.17) than in CON (4.39 ± 0.30 kJ/min). During subsequent exercise, blood glucose increased significantly in INS from 5.6 ± 0.1 at 0 min to 6.3 ± 0.3 mmol/l at 30 min (P < 0 01), which was accompanied by a lower blood lactate response (P < 0 05). Oxygen uptake, rates of substrate utilization, heart rate, and ratings of perceived exertion were not different between trials. Insulin-induced normoglycaemia increased blood glucose during subsequent exercise without altering overall substrate utilization

    Human osteoblast growth and maturation in response to metformin and the thienopyridone, A769662

    Get PDF
    Metformin (Met) is a biguanide drug widely used in the treatment and management of non insulin-dependent diabetes mellitus. In recent years it has emerged that Met, by stimulating adenosine monophosphate-activated protein kinase (AMPK), can promote the maturation of osteoblasts, albeit cells sourced from rodent and murine calvaria. Finding novel uses for existing drugs is especially appealing, primarily from the fiscal and time constraints posed in developing new products. Identifying agents capable of supporting human osteoblast growth and differentiation are attractive in a bone regenerative context. Since studies using Met are invariably restricted to rodent and murine osteoblasts we sought to investigate whether this biguanide might have a positive influence upon human osteoblast growth and maturation. To this end we examined the effect of Met on two osteoblast-like cell lines, MG63 and Saos-2, and compared the responses to primary human osteoblasts and their bone marrow-derived stem cell progeny. Furthermore we examined the effect of a cell permeable Met surrogate, A769662, which is a potent and far more selective activator of AMPK. Herein we report that Met is without influence on cell growth. Furthermore the application of Met, albeit in the millimolar range, actually inhibited osteoblast maturation. Conversely A769662 was toxic to the osteosarcoma-derived cell lines, MG63 and Saos-2, but without effect on the growth of primary cells or their stem cell progenitors. Since the cell lines are known to be p53 deficient we propose that activation of AMPK by A769662 could form part of the arsenal in the fight against osteosarcoma

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Performance Evaluation of Staged Bosch Process for CO2 Reduction to Produce Life Support Consumables

    Get PDF
    Utilizing carbon dioxide to produce water and hence oxygen is critical for sustained manned missions in space, and to support both NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) concepts. For long term missions beyond low Earth orbit, where resupply is significantly more difficult and costly, open loop ARS, like Sabatier, consume inputs such as hydrogen. The Bosch process, on the other hand, has the potential to achieve complete loop closure and is hence a preferred choice. However, current single stage Bosch reactor designs suffer from a large recycle penalty due to slow reaction rates and the inherent limitation in approaching thermodynamic equilibrium. Developmental efforts are seeking to improve upon the efficiency (hence reducing the recycle penalty) of current single stage Bosch reactors which employ traditional steel wool catalysts. Precision Combustion, Inc. (PCI), with support from NASA, has investigated the potential for utilizing catalysts supported over short-contact time Microlith substrates for the Bosch reaction to achieve faster reaction rates, higher conversions, and a reduced recycle flows. Proof-of-concept testing was accomplished for a staged Bosch process by splitting the chemistry in two separate reactors, first being the reverse water-gas-shift (RWGS) and the second being the carbon formation reactor (CFR) via hydrogenation and/or Boudouard. This paper presents the results from this feasibility study at various operating conditions. Additionally, results from two 70 hour durability tests for the RWGS reactor are discussed
    • …
    corecore