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This study investigated how acute restoration of normoglycaemia affected energy metabolism during exercise in nonobese patients
with type 2 diabetes. Six subjects (mean± SEM) aged 56.2± 2.7 years, with a BMI of 24.5± 1.5 kg/m2 and a VO2 peak of 28.7ml/kg/
min, attended the lab on two randomised occasions for a four-hour resting infusion of insulin or saline, followed by 30 minutes
cycling at 50% VO2 peak. During the 4 h resting infusion, there was a greater (P < 0 0001) reduction in blood glucose in insulin
treatment (INS) (from 11.2± 0.6 to 5.6± 0.1mmol/l) than in saline treatment/control (CON) (from 11.5± 0.7 to 8.5± 0.6mmol/
l). This was associated with a lower (P < 0 05) resting metabolic rate in INS (3.87± 0.17) than in CON (4.39± 0.30 kJ/min).
During subsequent exercise, blood glucose increased significantly in INS from 5.6± 0.1 at 0min to 6.3± 0.3mmol/l at 30min
(P < 0 01), which was accompanied by a lower blood lactate response (P < 0 05). Oxygen uptake, rates of substrate utilization,
heart rate, and ratings of perceived exertion were not different between trials. Insulin-induced normoglycaemia increased
blood glucose during subsequent exercise without altering overall substrate utilization.

1. Introduction

Around 90% of adults with type 2 diabetes (T2D) are over-
weight or obese [1], and a previous research has shown that
glycaemic control can be improved in these individuals by
weight loss through a structured exercise program or a
nutritional intervention [2, 3]. Little research is conducted
on the c. 360,000 UK-based nonobese patients with T2D
(BMI < 25 kg/m2) (based on the data in [4]), which still pos-
sess a significant risk of secondary complications [5] and
have an equal risk of cardiovascular disease to their obese
counterparts [6].

Exercise is an important component in the management
of T2D as it can help control weight and improve cardiovas-
cular fitness [7], which are important to mitigate secondary
complications. Exercise is also crucial to improving insulin
sensitivity [8] and overall glycaemic control [9]. Exercise
does, however, present potential challenges in patients with

T2D, and this includes the risk of hypoglycaemic episodes,
particularly in those taking sulfonylureas and insulin [10].
During exercise, patients with T2D have normal or elevated
rates of skeletal muscle glucose disposal but impaired hepatic
glucose output [11], increasing the risk of hypoglycaemia.
Moreover, exercise increases insulin sensitivity for up to 72
hours postexercise [12], which presents a risk of hypoglycae-
mia during recovery from exercise. Overweight and obese
patients with T2D not taking insulin are able to reduce their
blood glucose levels during exercise [13–15], and insulin and
exercise synergistically increase muscle glucose uptake [16].
Reductions in blood glucose have also been observed in
patients with T2D with both mild [13] and substantial [14,
17] preexercise hyperglycaemia. Both moderate intensity
continuous exercise and particularly high intensity exercise
are able to reduce nocturnal/fasting glycaemia [15], poten-
tially predisposing to the risk of hypoglycaemia in the fasted
state. In addition, plasma glucose utilization is increased

Hindawi
Journal of Diabetes Research
Volume 2017, Article ID 8248725, 8 pages
https://doi.org/10.1155/2017/8248725

https://doi.org/10.1155/2017/8248725


during exercise in nonobese [18] and obese [19] patients
with T2D. Therefore, patients taking oral glucose-
lowering medication prior to exercise are at a heightened
risk of hypoglycaemia.

The aim of this study was to determine if exercise in nor-
moglycaemic nonobese patients with T2D was possible with-
out significant reductions in blood glucose levels. Indeed, we
sought to determine whether restoration of preexercise nor-
moglycaemia in nonobese patients with T2D was associated
with changes in perceived exertion, substrate utilization, or
hypoglycemic episodes during subsequent moderate exercise.

2. Research Design and Methods

2.1. Subjects. Six nonobese and nonsmoking participants
(five male) with a diagnosis of type 2 diabetes gave written
informed consent to participate in this study, which was
approved by Nottingham University Hospital Ethics Com-
mittee and conformed to the Declaration of Helsinki. All
participants had type 2 diabetes for at least three years
(mean duration of 7.8 yrs and range of 3 to 13 years) and
had suboptimally controlled diabetes [HbA1c > 8%
(64mmol/mol)]. Subjects were recruited from Nottingham
University Hospital Diabetes Register and from participating

General Practitioner Surgeries. Subjects were 56.2± 2.7 years
of age, were 66.7± 6.0 kg in weight, and had a BMI of
24.5± 1.5 kg/m2 and a VO2 peak of 28.7ml/kg/min. Subjects
were excluded if they had significant complications of diabe-
tes, vascular disease, abnormal renal or hepatic function, or
other disorders that prevented exercise, including respiratory
diseases and arthritis (Table 1). Furthermore, participants
were excluded if they produced a recent abnormal Bruce pro-
tocol treadmill test to stage III [20]. Subjects were not taking
medications that may alter the response to exercise including
beta blockers and calcium channel blockers.

2.2. Preliminary Measurements. Subjects attended the labora-
tory prior to the main experimental visits where they were
familiarized with the ventilated canopy system (GEM Indi-
rect Calorimetry, GEMNutrition Ltd., Daresbury, UK) that
was used for the measurement of a resting metabolic rate
[23]. Subjects then completed an incremental exercise test
to the maximum predicted heart rate (220 minus age in
years) using an electrically braked cycle ergometer (Lode,
Groningen, Netherlands) for the determination of maximum
oxygen consumption [20]. Before each test, subjects were
allowed towarmup at aworkload of 20W for 5minuteswhilst
pedaling at 50 rpm. The test used involved a continuous

Table 1: Subject demographics and inclusion and exclusion criteria for subjects.

Subject demographics

Age 56.2± 2.7 years

Gender distribution 5 male and 1 female participants

Height (m) 1.64± 0.04
Weight (kg) 66.7± 6.0
BMI (kg/m2) 24.5± 1.5
Time since diagnosis (years) 7.8± 1.4
Diabetes treatment Metformin (n = 6)
HbA1c (%)/mmol/mol 9.4± 0.3/78.9± 3.8
Fasting blood glucose (mmol/l) 11.3± 0.6
Predicted RMR (Schofield equations) [21] (MJ/d) 6.36± 0.31
Calculated RMR (MJ/d) 5.31± 1.15

VO2 peak (ml/kg/min)
28.7 (82± 4% of the predicted values for healthy

individuals of similar age)

Inclusion criteria Exclusion criteria

Type 2 diabetes diagnosed >2 yrs before consent History of cardiac disease

Age 40–69 years inclusive History of cerebrovascular events or transient ischemic episodes

BMI: <30 kg/m2 History of intermittent claudication

Suboptimal glycaemic control: HbA1c > 8% (64mmol/mol)
Significant hypertension defined as a systolic BP > 170mmHg

and/or diastolic BP > 95mmHg

Evidence of recent, regular moderate physical activity
(PAL of 1.6–1.7) [22]

Any other disease likely to affect the ability to exercise including
arthritis and respiratory disease

Normal resting 12-lead ECG
Any cardiorespiratory drugs other than thiazide diuretics, aspirin,

ACE-inhibitors, and statins

No significant ECG changes or chest pain during a Bruce
protocol exercise ECG to stage III with a normal physiological
response to exercise

Secondary complications: any diabetic retinopathy other
than mild background retinopathy, nephropathy

(proteinuria on >1 occasion or raised creatinine), and sensory neuropathy

Data are presented as mean ± SEM.
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incremental test to exhaustion, with the workload being
increased progressively every 3min by 15–30W from an ini-
tial workload of 40W. The oxygen uptake during the last
minute of the test was taken as the VO2 peak value of the indi-
vidual. Maximal effort was determined by achievement of a
maximal predicted heart rate (±10%), a respiratory exchange
ratio (RER) exceeding 1.1, a VE/VCO2 ratio exceeding 30,
and a plateau of O2 consumption, although this was not
always present (thus, we report VO2 peak). During all experi-
mental visits, an online gas analysis system (Vmax 29,
SensorMedics, USA) was used to measure O2 consumption,
CO2 production, and the RER. The measurements during
this test were used to calculate the workload required (% of
VO2 peak) during experimental visits.

2.3. Experimental Design. Subjects attended the laboratory on
two randomized occasions (morning visits), which were sep-
arated by at least two weeks. One experimental visit com-
prised of an insulin infusion (INS trial), and the other a
saline infusion (CON trial) whilst resting for four hours. Sub-
jects were asked to maintain habitual levels of physical activ-
ity and a typical isocaloric food intake in the 48 hours before
experimental visits. Compliance with the isocaloric diet and
typical food intake was assessed through the completion of
food diaries. Subjects stopped taking medication for the con-
trol of T2D 24 hours before each trial and did not take any
habitual morning medication on the day of the trial. Subjects
attended the laboratory after an overnight fast, which was
defined as the cessation of food and drink other than water
from 10.00 pm on the previous evening.

At the beginning of each visit, a resting metabolic rate
was measured for 20 minutes by indirect calorimetry using
a ventilated canopy connected to an online gas analysis sys-
tem. Substrate oxidation rates were calculated from the mea-
surements of O2 consumption and CO2 production using
stoichiometric equations [23]. Two retrograde cannulae were
then inserted in an antecubital vein and a dorsal hand vein
for the infusion of insulin/saline and for blood sampling,
respectively. The subject’s hand and wrist was kept in a hot
air box maintained at 55–60°C throughout the trial to arter-
ialize the blood as previously described [24]. Having arteria-
lized the blood for 10 minutes, a blood sample was then taken
for the baseline measurement of whole blood glucose and lac-
tate (determined immediately on the YSI, 2300 Stat autoana-
lyzer), serum insulin, sodium and potassium, and plasma free
fatty acid (FFA) concentrations.

Subjects then rested in a semisupine position for 4 hours
whilst receiving an infusion of insulin or 0.9% saline. The
infusion of human soluble insulin (Actrapid, Novo Nordisk,
Copenhagen, Denmark) was started at a rate of 0.05mU/
kg/hr and varied between 0.05 in hour one and 0.01mU/
kg/hr in hour four of the resting phase (average infusion rate
at 1.5± 0.2ml/h) to maintain blood glucose levels at approx-
imately 6mmol/l. Insulin infusion was stopped before the
exercise started. Saline was infused at 2.3± 0.1ml/h. Insulin
and saline were administered in a single-blind design. For
safety monitoring, arterialized venous blood samples were
taken every 15 minutes to measure glucose and lactate con-
centrations using the glucose oxidase and L-lactate oxidase

methods, respectively (YSI, 2300 Stat autoanalyzer, Yellow
Springs Instruments, Yellow Springs, USA). Data presented
are every one hour for blood glucose and insulin during the
resting phase. Additional blood samples were taken every
60 minutes to measure serum insulin using a radioimmuno-
assay (Diagnostics Products Corporation, Llanberis, Wales,
UK), serum sodium and potassium by flame photometry,
and plasma FFA using a commercially available kit (NEFA-
C test, Wako, Osaka, Japan). The resting metabolic rate was
further measured during the last 20 minutes of each hour
and after the removal of the ventilated canopy. Brachial
artery blood pressure and the heart rate were also determined
using an automated Dinamap blood pressure monitor (Dina-
map vital signs monitor, GE Healthcare, Chicago, IL). Both
insulin and saline infusions were stopped at the end of the
four-hour rest period.

Following the four-hour rest period of insulin or saline
infusion, subjects then completed the exercise portion of
the visit, which comprised of 30 minutes cycling at 50%
VO2 peak. This exercise intensity and duration is recom-
mended to improve glycaemic control by the American
College of Sports Medicine and the American Diabetes Asso-
ciation [11] and therefore represents a suitably challenging
exercise stimulus for patients with type 2 diabetes. Every
ten minutes throughout exercise, expired air and arterialized
venous blood samples were collected, and heart rate and
blood pressure were measured. At the same time intervals,
the subject’s rating of perceived exertion was determined
using the Borg scale [25]. Following the completion of exer-
cise, subjects were provided with a meal of mixed macronu-
trient composition and were observed for 1 hour, after
which they were permitted to leave the lab once blood glu-
cose concentrations were stabilized.

2.4. Statistics. Data met the criteria for normality (a Gaussian
distribution) when tested using a Kolmogorov-Smirnov test
with Dallal-Wilkinson-Lille. A two-way repeated-measure
analysis of variance (ANOVA) was used to determine if there
were statistically significant differences in blood metabolites,
metabolic rate and rates of substrate utilization between the
insulin and control trials, and over time. Separate two-way
ANOVA were completed for the resting and exercise phases,
respectively. When a significant main effect was observed, a
Holm-Sidak test was used to correct for multiple compari-
sons and locate differences. Data were analyzed using Graph-
Pad Prism (GraphPad Prism 7.0, GraphPad Software Inc.).
Data are presented as means± SEM, and statistical signifi-
cance was set at P < 0 05.

3. Results

3.1. Resting Phase. In the resting phase, the insulin infusion
(INS) significantly increased serum insulin levels in compar-
ison to CON (P < 0 0001), peaking after 60 minutes of infu-
sion (Figure 1(a)) and then fell as the insulin infusion rate
was lowered in response to the lowering of blood glucose.
This higher level of insulin in the INS trial promoted a fall
in blood glucose from 11.2± 0.6 to 5.6± 0.1mmol/l after 4 h
rest in the INS trial, which was lower (P < 0 0001) compared
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with the fall in the CON trial (from 11.5± 0.7 to 8.5
± 0.6mmol/l, Figure 1(b)). The infusion of insulin suppressed
FFA concentrations in the INS trial during the first 2 h of rest
compared to CON (P < 0 05, Figure 2(a)). The infusion of

insulin (INS) was also associated with an increase in average
resting RER in comparison to CON (0.93± 0.01 versus
0.83± 0.02, P < 0 05), an increase in average CHO oxidation
by 16.6± 4.7 g (P < 0 05), and a decrease in average fat
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Figure 1: Serum insulin (a) and blood glucose (b) concentrations during the INS and CON trials. Data represent n = 6, mean± SEM. (a)
During the resting phase, the infusion significantly increased serum insulin in INS compared to CON (main effect of infusion, P < 0 01);
there were also significant interaction (P < 0 0001) and time (P< 0.0001) effects. During exercise, there was no effect of infusion, time, or
an interaction. (b) At rest, the infusion significantly lowered blood glucose in INS compared to CON (main effect of infusion, P < 0 01);
there were also significant interaction (P < 0 0001) and time (P < 0 0001) effects. During exercise, blood glucose increased significantly in
INS (P < 0 01) but not in CON. #P < 0 0001 from CON; aP < 0 01 from immediately before exercise (0min).
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Figure 2: Plasma FFA (a) and blood lactate (b) concentrations during the INS and CON trials. Data represent n= 6, mean± SEM. (a) At rest,
there were significant time (P < 0 001) and interaction (P < 0 05) effects, where plasma FFA were suppressed in INS. During exercise, there
was a significant time effect (P < 0 001) and a trend (P = 0 085) for an interaction effect, where plasma FFA in INS increased to greater extent
than that in CON. (b) At rest, there was no significant effect of the insulin infusion or time on blood lactate, although there was a significant
interaction effect (P < 0 01). During exercise, there were significant time (P < 0 001) and interaction (P < 0 05) effects, where the blood lactate
response was lower in INS than that in CON. ∗P < 0 05 from CON; ∗∗P < 0 01 from CON.
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oxidation by 9.9± 2.9 g over four hours (P < 0 05, Table 2).
During the four-hour infusion period, the average resting
metabolic rate was lower in the INS trial (3.87± 0.17 kJ/min)
when compared to that in the CON trial (4.39± 0.30 kJ/min)
(P < 0 05, Table 2).

3.2. Exercise Phase. Immediately before and during the
30min of moderate intensity exercise, there were no signifi-
cant differences in serum insulin levels between INS and
CON (Figure 1(a)). Moreover, serum insulin concentrations
were maintained at preexercise levels in both groups
throughout the exercise phase (INS: 6.3± 0.9mU/l versus
CON: 7.0± 1.2mU/l; Figure 1(a)). At the start of exercise,
blood glucose was significantly lower (P < 0 0001) in the
INS trial (5.6± 0.1mmol/l) than in the CON trial (8.5
± 0.6mmol/l). During exercise, there was a small but

significant increase (P < 0 01) in blood glucose in the INS
trial (from 5.6± 0.1mmol/l immediately before commencing
exercise to 6.3± 0.03mmol/l at 30min of exercise)
(Figure 1(b)). During the same period in the CON trial, blood
glucose levels were maintained at 8.8± 0.6mmol/l and were
lower than those in INS at all time points (P < 0 0001). Dur-
ing exercise, there was a trend (P = 0 085) for a greater
increase in FFA concentration in the INS trial (from 0.69
± 0.15 to 1.23± 0.17mmol/l, P < 0 0001), when compared
with the CON trial (from 0.63± 0.11 to 0.96± 0.15mmol/l,
P < 0 001; Figure 2(a)). There was a greater increase in blood
lactate in the CON than in the INS trial (interaction,
P < 0 05), with higher rates at 20min (P < 0 01) and
30min (P < 0 05) of exercise (Figure 2(b)). There was an
increase in serum potassium throughout exercise
(Figure 3(b)), with no significant differences between INS

Table 2: Physiological and metabolic responses to the infusion of insulin (INS) and saline (CON) in patients with T2D whilst resting for
four hours.

Baseline 60mins 120mins 180mins 240mins

EE
CON 4.29± 0.28 4.57± 0.41 4.28± 0.26 4.29± 0.35 4.42± 0.33
INS 4.01± 0.24 3.88± 0.14 3.91± 0.21∗ 3.78± 0.24 3.90± 0.16

RER
CON 0.89± 0.04 0.80± 0.05 0.83± 0.02 0.82± 0.02 0.85± 0.02
INS 0.89± 0.04 0.94± 0.02∗ 0.94± 0.02∗∗ 0.92± 0.04 0.91± 0.02

CHO ox
CON 0.17± 0.03 0.09± 0.03 0.12± 0.01 0.10± 0.02 0.13± 0.02
INS 0.16± 0.03 0.20± 0.02∗ 0.19± 0.02∗∗ 0.16± 0.03 0.17± 0.02

FAT ox
CON 0.04± 0.01 0.09± 0.02 0.06± 0.01 0.07± 0.01 0.06± 0.01
INS 0.04± 0.01 0.02± 0.01∗ 0.02± 0.01∗∗ 0.03± 0.01 0.03± 0.01

Data represent n = 6, and values are means ± SEM for energy expenditure (EE) in kJ/min, respiratory exchange ratio (RER), carbohydrate oxidation (CHO ox),
and fat oxidation (FAT ox) in g/min. Star symbols denote a significant difference between CON and INS (∗P < 0 05, ∗∗P < 0 01).
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Figure 3: Serum sodium (a) and potassium (b) concentrations during the INS and CON trials. Data represent n = 6, mean± SEM. (a) At rest,
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lower potassium in INS than in CON and a trend (P = 0 063) for time effect. During exercise, there was a significant increase in serum
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and CON trials. There were no significant differences in
serum sodium (Figure 3(a)), oxygen uptake, RER, rates of
CHO and fat oxidation, heart rate, or ratings of perceived
exertion (Table 3) between INS and CON trials.

4. Discussion

These data showed for the first time that nonobese patients
with T2D display similar metabolic responses to moderate
exercise performed in the normoglycaemic and hyperglycae-
mic states. All subjects in the INS trial completed 30min
exercise without biochemical or symptomatic hypoglycaemia
during exercise or the one-hour recovery after exercise,
despite starting the exercise phase with a mean blood glucose
of 5.6± 0.1mmol/l. As a matter of fact, blood glucose
increased during exercise following insulin infusion. Also,
following saline infusion, blood glucose did not fall during
exercise, suggesting impairment in exercise-mediated glucose
disposal in lean subjects with T2D. Blood glucose levels in
T2D typically fall due to an increase in skeletal muscle glu-
cose uptake that surpasses any increase in hepatic glucose
production [26]. Moreover, since the liver is sensitive to cir-
culating insulin concentrations, the peripheral levels of
which were similar between trials, the liver was not likely
responsible for this increase in blood glucose. A reduced glu-
cose uptake as a result of reduced mass action effect of glu-
cose was therefore more likely responsible for the absence
of lowered blood glucose during exercise. Indeed, blood glu-
cose was lower in INS than in CON throughout the resting
phase, which may have led to a lower mass action effect of
glucose [27] during exercise. Hepatic glucose production
and muscle glucose uptake were not directly measured in this
study, however, and therefore, future studies to directly test
this hypothesis are warranted. Subcutaneous insulin poses a
risk of hypoglycaemia during subsequent exercise, and data
in this study are not sufficient to mitigate this concern.
Patients on insulin therapy display higher levels of serum
insulin [28] than those displayed in this study at the start of
exercise. Despite the higher blood glucose in the CON trial
during both the resting and exercise phases, RER values were
not significantly different between INS and CON during the
exercise phase. This suggests a similar contribution of CHO
and fat oxidation to energy metabolism.

Patients with T2D and high preexercise blood glucose
levels display an increase in peripheral glucose uptake
compared to euglycaemic, insulin-sensitive controls [16].
As a result, previous studies with both mild [13] and high
[14, 17] pre-exercise hyperglycaemia have shown reductions
in blood glucose during exercise. Other studies, however,

similar to the present study, have not shown a reduction in
blood glucose levels during exercise in the fasted state [19],
perhaps due to the insulin resistance associated with an over-
night fast [29]. As far as we are aware, the present study is the
first in which no lowering in blood glucose was observed in
nonobese patients with type 2 diabetes during exercise
performed under normoglycaemic conditions.

There was a tendency for a greater increase in plasma
FFA concentration during exercise in INS compared with
that in CON. Greater levels of plasma FFA prevent glucose
uptake by muscle [30, 31] and could therefore explain the
increase in blood glucose levels in the INS trial. In support
of this suggestion, reductions in plasma FFA through treat-
ment with acipimox have been shown to decrease fat oxida-
tion, increase carbohydrate oxidation, and lower blood
glucose during moderate intensity exercise in T2D patients
[32]. Patients with T2D have impaired ability to oxidize mus-
cle glycogen during exercise [19], and the lower plasma glu-
cose availability in the INS trial perhaps explains the greater
increase in FFA in that trial.

Individuals with untreated T2D have increased resting
energy expenditure, that is, associated with greater gluco-
neogenesis [33], but a lower thermic response to food
intake [34] in comparison to insulin-sensitive controls.
Short-term (8 days) subcutaneous insulin injection is suffi-
cient to lower the resting metabolic rate and increase the
thermic response to food intake [35]. Furthermore, 12
months of subcutaneous insulin is also sufficient to reduce
the resting metabolic rate and lower hepatic glucose pro-
duction [36]. The present study extends those findings
by reporting a lower resting metabolic rate in response
to acute insulin infusion (4 hours).

This study has shown that the infusion of insulin to
achieve normoglycaemia in resting T2D subjects maintains
blood glucose concentrations at euglycaemic levels during
subsequent moderate intensity exercise. Subject numbers
were limited due to difficulties of identifying and recruiting
patients with nonobese T2D, a cohort that represent 10% of
T2D patients, who were able and willing to exercise safely.
Further studies of larger cohorts are warranted to deter-
mine if these results are extended to larger populations.
Glucose-lowering medication was stopped 24 hours before
study visits. Although this study shows that hypoglycaemia
was not present during exercise, the risk would be greater
following habitual T2D medication, particularly sulfonyl-
ureas and insulin. Further studies are required to elucidate
the mechanisms underlying changes in metabolic physiol-
ogy following normalization of blood glucose in T2D by
glucose-lowering medications.

Table 3: Physiological and metabolic responses to submaximal cycling following infusion with insulin (INS) or saline (CON) in patients
with T2D.

O2 uptake (ml/kg/min) RER CHO ox (g/min) Fat ox (g/min) Heart rate (beats/min) RPE (6–20)

CON 14.1± 1.1 0.86± 0.02 0.80± 0.11 0.17± 0.04 124± 6 11.6± 0.6
INS 14.1± 1.5 0.74± 0.07 0.74± 0.07 0.18± 0.03 118± 7 11.2± 0.9
Values represent n = 6 and are displayed as mean ± SEM for 30min of exercise. RER denotes respiratory exchange ratio; CHO ox denotes carbohydrate
oxidation rate; fat ox denotes fat oxidation.
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5. Conclusions

These data demonstrate that short-duration continuous
exercise of moderate intensity is safe when nonobese patients
with T2D are exercising following insulin-induced restora-
tion of normoglycaemia. Furthermore, patients with T2D
display similar metabolic responses to exercise in the normo-
glycaemic or hyperglycaemic state. Given the wealth of stud-
ies investigating the metabolic responses to exercise and
health benefits in obese type 2 diabetes patients (for review
see [37]), the data from the present study highlight the need
for further research to investigate the potential differences
between obese and nonobese patients with T2D in the effi-
cacy of exercise in disease management.
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