35 research outputs found

    Aligning and Updating Cadaster Maps with Aerial Images by Multi-Task, Multi-Resolution Deep Learning

    Get PDF
    International audienceA large part of the world is already covered by maps of buildings , through projects such as OpenStreetMap. However when a new image of an already covered area is captured, it does not align perfectly with the buildings of the already existing map, due to a change of capture angle , atmospheric perturbations, human error when annotating buildings or lack of precision of the map data. Some of those deformations can be partially corrected, but not perfectly, which leads to misalignments. Additionally , new buildings can appear in the image. Leveraging multi-task learning, our deep learning model aligns the existing building polygons to the new image through a displacement output, and also detects new buildings that do not appear in the cadaster through a segmentation output. It uses multiple neural networks at successive resolutions to output a displacement field and a pixel-wise segmentation of the new buildings from coarser to finer scales. We also apply our method to buildings height estimation, by aligning cadaster data to the rooftops of stereo images. The code is available at https://github.com/Lydorn/mapalignment

    SIRENE: A Spatial Data Infrastructure to Enhance Communities’ Resilience to Disaster-Related Emergency

    Get PDF
    Abstract Planning in advance to prepare for and respond to a natural hazard-induced disaster-related emergency is a key action that allows decision makers to mitigate unexpected impacts and potential damage. To further this aim, a collaborative, modular, and information and communications technology-based Spatial Data Infrastructure (SDI) called SIRENE—Sistema Informativo per la Preparazione e la Risposta alle Emergenze (Information System for Emergency Preparedness and Response) is designed and implemented to access and share, over the Internet, relevant multisource and distributed geospatial data to support decision makers in reducing disaster risks. SIRENE flexibly searches and retrieves strategic information from local and/or remote repositories to cope with different emergency phases. The system collects, queries, and analyzes geographic information provided voluntarily by observers directly in the field (volunteered geographic information (VGI) reports) to identify potentially critical environmental conditions. SIRENE can visualize and cross-validate institutional and research-based data against VGI reports, as well as provide disaster managers with a decision support system able to suggest the mode and timing of intervention, before and in the aftermath of different types of emergencies, on the basis of the available information and in agreement with the laws in force at the national and regional levels. Testing installations of SIRENE have been deployed in 18 hilly or mountain municipalities (12 located in the Italian Central Alps of northern Italy, and six in the Umbria region of central Italy), which have been affected by natural hazard-induced disasters over the past years (landslides, debris flows, floods, and wildfire) and experienced significant social and economic losses

    Passage Performance of two Cyprinids with Different Ecological Traits in a Fishway with Distinct Vertical Slot Configurations

    Get PDF
    The azimuthal cos{\phi} and cos2{\phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the HERMES experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects
    corecore