43 research outputs found

    A pilot controlled trial of a combination of dense cranial electroacupuncture stimulation and body acupuncture for post-stroke depression

    Get PDF
    BACKGROUND: Our previous studies have demonstrated the treatment benefits of dense cranial electroacupuncture stimulation (DCEAS), a novel brain stimulation therapy in patients with major depression, postpartum depression and obsessive-compulsive disorder. The purpose of the present study was to further evaluate the effectiveness of DCEAS combined with body acupuncture and selective serotonin reuptake inhibitors (SSRIs) in patients with post-stroke depression (PSD). METHODS: In a single-blind, randomized controlled trial, 43 patients with PSD were randomly assigned to 12 sessions of DCEAS plus SSRI plus body electroacupuncture (n = 23), or sham (non-invasive cranial electroacupuncture, n-CEA) plus SSRI plus body electroacupuncture (n = 20) for 3 sessions per week over 4 weeks. Treatment outcomes were measured using the 17-item Hamilton Depression Rating Scale (HAMD-17), the Clinical Global Impression - Severity scale (CGI-S) and Barthel Index (BI), a measure used to evaluate movement ability associated with daily self-caring activity. RESULTS: DCEAS produced a significantly greater reduction of both HAMD-17 and CGI-S as early as week 1 and CGI-S at endpoint compared to n-CEA, but subjects of n-CEA group exhibited a significantly greater improvement on BI at week 4 than DCEAS. Incidence of adverse events was not different in the two groups. CONCLUSIONS: These results indicate that DCEAS could be effective in reducing stroke patients’ depressive symptoms. Superficial electrical stimulation in n-CEA group may be beneficial in improving movement disability of stroke patients. A combination of DCEAS and body acupuncture can be considered a treatment option for neuropsychiatric sequelae of stroke. TRIAL REGISTRATION: http://www.clinicaltrials.gov, NCT01174394

    Structural and Biochemical Characterization of SrcA, a Multi-Cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host

    Get PDF
    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 Å revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    A Large Scale shRNA Barcode Screen Identifies the Circadian Clock Component ARNTL as Putative Regulator of the p53 Tumor Suppressor Pathway

    Get PDF
    BACKGROUND: The p53 tumor suppressor gene is mutated in about half of human cancers, but the p53 pathway is thought to be functionally inactivated in the vast majority of cancer. Understanding how tumor cells can become insensitive to p53 activation is therefore of major importance. Using an RNAi-based genetic screen, we have identified three novel genes that regulate p53 function. RESULTS: We have screened the NKI shRNA library targeting 8,000 human genes to identify modulators of p53 function. Using the shRNA barcode technique we were able to quickly identify active shRNA vectors from a complex mixture. Validation of the screening results indicates that the shRNA barcode technique can reliable identify active shRNA vectors from a complex pool. Using this approach we have identified three genes, ARNTL, RBCK1 and TNIP1, previously unknown to regulate p53 function. Importantly, ARNTL (BMAL1) is an established component of the circadian regulatory network. The latter finding adds to recent observations that link circadian rhythm to the cell cycle and cancer. We show that cells having suppressed ARNTL are unable to arrest upon p53 activation associated with an inability to activate the p53 target gene p21(CIP1). CONCLUSIONS: We identified three new regulators of the p53 pathway through a functional genetic screen. The identification of the circadian core component ARNTL strengthens the link between circadian rhythm and cancer

    Genomewide Association Scan of Suicidal Thoughts and Behaviour in Major Depression

    Get PDF
    Background Suicidal behaviour can be conceptualised as a continuum from suicidal ideation, to suicidal attempts to completed suicide. In this study we identify genes contributing to suicidal behaviour in the depression study RADIANT. Methodology/Principal Findings A quantitative suicidality score was composed of two items from the SCAN interview. In addition, the 251 depression cases with a history of serious suicide attempts were classified to form a discrete trait. The quantitative trait was correlated with younger onset of depression and number of episodes of depression, but not with gender. A genome-wide association study of 2,023 depression cases was performed to identify genes that may contribute to suicidal behaviour. Two Munich depression studies were used as replication cohorts to test the most strongly associated SNPs. No SNP was associated at genome-wide significance level. For the quantitative trait, evidence of association was detected at GFRA1, a receptor for the neurotrophin GDRA (p = 2e-06). For the discrete trait of suicide attempt, SNPs in KIAA1244 and RGS18 attained p-values of <5e-6. None of these SNPs showed evidence for replication in the additional cohorts tested. Candidate gene analysis provided some support for a polymorphism in NTRK2, which was previously associated with suicidality. Conclusions/Significance This study provides a genome-wide assessment of possible genetic contribution to suicidal behaviour in depression but indicates a genetic architecture of multiple genes with small effects. Large cohorts will be required to dissect this further

    Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is characterized by an immune system attack targeting myelin, which is produced by oligodendrocytes (OLs). We performed single-cell transcriptomic analysis of OL lineage cells from the spinal cord of mice induced with experimental autoimmune encephalomyelitis (EAE), which mimics several aspects of MS. We found unique OLs and OL precursor cells (OPCs) in EAE and uncovered several genes specifically alternatively spliced in these cells. Surprisingly, EAE-specific OL lineage populations expressed genes involved in antigen processing and presentation via major histocompatibility complex class I and II (MHC-I and -II), and in immunoprotection, suggesting alternative functions of these cells in a disease context. Importantly, we found that disease-specific oligodendroglia are also present in human MS brains and that a substantial number of genes known to be susceptibility genes for MS, so far mainly associated with immune cells, are expressed in the OL lineage cells. Finally, we demonstrate that OPCs can phagocytose and that MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. Our results suggest that OLs and OPCs are not passive targets but instead active immunomodulators in MS. The disease-specific OL lineage cells, for which we identify several biomarkers, may represent novel direct targets for immunomodulatory therapeutic approaches in MS

    Association of whole-genome and NETRIN1 signaling pathway-derived polygenic risk scores for Major Depressive Disorder and white matter microstructure in UK Biobank

    Get PDF
    Background: Major depressive disorder is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome and have reported growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide important routes for identification of disease mechanisms by focusing on a specific process, excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether major depressive disorder polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRSs) and the whole genome, excluding NETRIN1 pathway genes (genomic-PRSs), were associated with white matter microstructure. Methods: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390). Results: We found significantly lower FA in the superior longitudinal fasciculus (β = −.035, p =.029) and significantly higher MD in a global measure of thalamic radiations (β =.029, p =.021), as well as higher MD in the superior (β =.034, p =.039) and inferior (β =.029, p =.043) longitudinal fasciculus and in the anterior (β =.025, p =.046) and superior (β =.027, p =.043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts. Conclusions: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations
    corecore