18 research outputs found

    Tumor metastasis to bone

    Get PDF
    Establishment of skeletal metastasis involves bidirectional interactions between the tumor cell and the cellular elements in the bone microenvironment. A better understanding of the pathophysiology of bone metastasis will be critical in developing the means to prevent bone metastasis or inhibit its progression. The receptor activator of nuclear factor-κB (RANK)/RANK ligand pathway has emerged as the key pathway regulating osteolysis in skeletal metastasis. A number of candidate factors, including the Wnt (wingless int) proteins, endothelin-1, and bone morphogenetic proteins, have been implicated in the establishment of osteoblastic metastasis. The complex nature of tumor-bone microenvironment interactions and the presence of multiple pathways that lead to bone metastasis suggests that simultaneous targeting of these pathways in the metastatic cascade are required for effective treatment. This review discusses current understanding of the pathophysiologic mechanisms that underlie the establishment of bone metastasis and potential molecular therapeutic strategies for prevention and treatment of bone metastasis

    In vitro evaluation of a double-stranded self-complementary adeno-associated virus type2 vector in bone marrow stromal cells for bone healing

    Get PDF
    Background: Both adenoviral and lentiviral vectors have been successfully used to induce bone repair by over-expression of human bone morphogenetic protein 2 (BMP-2) in primary rat bone marrow stromal cells in pre-clinical models of ex vivo regional gene therapy. Despite being a very efficient means of gene delivery, there are potential safety concerns that may limit the adaptation of these viral vectors for clinical use in humans. Recombinant adeno-associated viral (rAAV) vector is a promising viral vector without known pathogenicity in humans and has the potential to be an effective gene delivery vehicle to enhance bone repair. In this study, we investigated gene transfer in rat and human bone marrow stromal cells in order to evaluate the effectiveness of the self-complementary AAV vector (scAAV) system, which has higher efficiency than the single-stranded AAV vector (ssAAV) due to its unique viral genome that bypasses the rate-limiting conversion step necessary in ssAAV.Methods: Self-complementaryAAV2 encoding GFP and BMP-2 (scAAV2-GFP and scAAV2-BMP-2) were used to transduce human and rat bone marrow stromal cells in vitro, and subsequently the levels of GFP and BMP-2 expression were assessed 48 hours after treatment. In parallel experiments, adenoviral and lentiviral vector mediated over-expression of GFP and BMP-2 were used for comparison.Results: Our results demonstrate that the scAAV2 is not capable of inducing significant transgene expression in human and rat bone marrow stromal cells, which may be associated with its unique tropism.Conclusions: In developing ex vivo gene therapy regimens, the ability of a vector to induce the appropriate level of transgene expression needs to be evaluated for each cell type and vector used. © 2011 Alaee et al; licensee BioMed Central Ltd

    Biologic adjuvants for fracture healing

    No full text
    corecore