25 research outputs found

    Energy analysis and greenhouse gas emission in broiler farms: A case study in Alborz province, Iran

    Get PDF
    The goal of this study was to examine the energy flows for poultry breeding in broiler production farms in Alborz province of Iran. Data were obtained randomly from 30 poultry production farms using a face to face questionnaire method. The results indicated that the total input energy was 189805.48 MJ per 1000 birds, while the output energy was 28151.17 MJ/(1000 bird). Net energy was negative, -161654.31 MJ/(1000 bird), implying that energy had been lost. Energy use efficiency was calculated as 0.15, showing the inefficient use of energy in the broiler production farms. The fuel energy (energy content of the fuel) with a share of 58.35% had the highest share of input energy and the feed energy by 29.71% was the next. Greenhouse gas (GHG) emission of the studied farms was 10267.96 kg CO2-eq/(1000 bird). Among different inputs, feed with 48% had the highest share of GHG emissions. Cobb-Douglas frontier production function was adopted to specify the production technology of the farms. Econometric model evaluation showed that the effects of diesel fuel and feed on output energy was significant at 1% level. The marginal physical productivity (MPP) values of energy inputs based on sensitivity analysis were 0.04 and 0.51 for diesel fuel and feed, respectively. The variability results between poultry farms showed that the most variability comes from fuel consumption

    Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches

    Get PDF
    AbstractEnergy consumption in agricultural products and its environmental damages has increased in recent centuries. Life cycle assessment (LCA) has been introduced as a suitable tool for evaluation environmental impacts related to a product over its life cycle.In this study, optimization of energy consumption and environmental impacts of chickpea production was conducted using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) techniques. Data were collected from 110 chickpea production enterprises using a face to face questionnaire in the cropping season of 2014–2015. The results of optimization revealed that, when applying MOGA, optimum energy requirement for chickpea production was significantly lower compared to application of DEA technique; so that, total energy requirement in optimum situation was found to be 31511.72 and 27570.61MJha−1 by using DEA and MOGA techniques, respectively; showing a reduction by 5.11% and 17% relative to current situation of energy consumption. Optimization of environmental impacts by application of MOGA resulted in reduction of acidification potential (ACP), eutrophication potential (EUP), global warming potential (GWP), human toxicity potential (HTP) and terrestrial ecotoxicity potential (TEP) by 29%, 23%, 10%, 6% and 36%, respectively. MOGA was capable of reducing the energy consumption from machinery, farmyard manure (FYM) diesel fuel and nitrogen fertilizer (the mostly contributed inputs to the environmental emissions) by 59%, 28.5%, 24.58% and 11.24%, respectively. Overall, the MOGA technique showed a superior performance relative to DEA approach for optimizing energy inputs and reducing environmental impacts of chickpea production system

    Combined application of Artificial Neural Networks and life cycle assessment in lentil farming in Iran

    Get PDF
    AbstractIn this study, an Artificial Neural Network (ANN) was applied to model yield and environmental emissions from lentil cultivation in Esfahan province of Iran. Data was gathered from lentil farmers using face to face questionnaire method during 2014–2015 cropping season. Life cycle assessment (LCA) was applied to investigate the environmental impact categories associated with lentil production. Based on the results, total energy input, energy output to input ratio and energy productivity were determined to be 32,970.10MJha−1, 0.902 and 0.06kgMJ−1, respectively. The greatest amount of energy consumption was attributed to chemical fertilizer (42.76%). Environmental analysis indicated that the acidification potential was higher than other environmental impact categories in lentil production system. Also results showed that the production of agricultural machinery was the main hotspot in abiotic depletion, eutrophication, global warming, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity impact categories, while direct emissions associated with lentil cultivation was the main hotspot in acidification potential and photochemical oxidation potential. In addition, diesel fuel was the main hotspot only in ozone layer depletion. The ANN model with 9-10-6-11 structure was identified as the most appropriate network for predicting yield and related environmental impact categories of lentil cultivation. Overall, the results of sensitivity analysis revealed that farmyard manure had the greatest effect on the most of the environmental impacts, while machinery was the most affecting parameter on the yield of the crop

    Quasi-static and impact cutting behavior definition of privet stem

    Get PDF
    Some of agricultural operations such as privet stem pruning are slowly, repetitive and occasionally dangerous for operators. Almost operators of privet trimmers are exposed to the unpleasant and dangerous arm and body vibrations and sound of pruning machines. The knowing of the shearing behaviors of privet stem have important role in the design and fabricate of suitable pruning machine. So a series of experimental tests were performed to measuring the shear force, shear consumption energy and shear strength of stem internodes of privet stalk under quasi-static and impact cutting at different loading rate, different internode position and moisture level 58% wet base. In the quasi-static cutting test, the stalk specimens were cut in the quasi-static process at four loading rates: 5, 10, 15 and 20 mm/min and three internode positions: fifth, tenth and fifteenth. In impact cutting test, the stalk specimens were served in impact process at four loading rates: 1, 2, 3 and 4 m/s and three internode positions: fifth, tenth and fifteenth. In quasi-static cutting, the variance analysis of the data indicated that the loading rate, created significant effect on shear strength and shear consumption energy in probability level of 5%. Also the internode position and the interaction effect of loading rate and internode position, created significant effects on shear strength and shear consumption energy in probability level of 1%. Based on the statistical analysis, the average values of shear consumption energy and shear strength were obtained as 556.70 J from 95.35 to 1567.95 J and 29.12 Mpa from 19.63 to 37.04 Mpa respectively. In impact cutting, the variance analysis of the data results showed that the effect of loading rate, the effect of internode position and interaction effect of loading rate on internode position, created significant effect on shear consumption energy and shear strength in probability level of 1%. The data statistical analysis showed the average values of shear consumption energy and shear strength were obtained as 17.16 J from 3.19 to 28.60 J and 1.01 Mpa from 0.21 to 2.53 Mpa respectively

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Burden of tracheal, bronchus, and lung cancer in North Africa and Middle East countries, 1990 to 2019: Results from the GBD study 2019

    Get PDF
    ObjectiveTo provide estimates on the regional and national burden of tracheal, bronchus, and lung (TBL) cancer and its attributable risk factors from 1990 to 2019 in the North Africa and Middle East (NAME) region.Methods and materialsThe Global Burden of Disease (GBD) 2019 data were used. Disability-adjusted life years (DALYs), death, incidence, and prevalence rates were categorized by sex and age groups in the NAME region, in 21 countries, from 1990 to 2019. Decomposition analysis was performed to calculate the proportion of responsible factors in the emergence of new cases. Data are presented as point estimates with their 95% uncertainty intervals (UIs).ResultsIn the NAME region, TBL cancer caused 15,396 and 57,114 deaths in women and men, respectively, in 2019. The age-standardized incidence rate (ASIR) increased by 0.7% (95% UI -20.6 to 24.1) and reached 16.8 per 100,000 (14.9 to 19.0) in 2019. All the age-standardized indices had a decreasing trend in men and an increasing trend in women from 1990 to 2019. Turkey (34.9 per 100,000 [27.6 to 43.5]) and Sudan (8.0 per 100,000 [5.2 to 12.5]) had the highest and lowest age-standardized prevalence rates (ASPRs) in 2019, respectively. The highest and lowest absolute slopes of change in ASPR, from 1990 to 2019, were seen in Bahrain (-50.0% (-63.6 to -31.7)) and the United Arab Emirates (-1.2% (-34.1 to 53.8)), respectively. The number of deaths attributable to risk factors was 58,816 (51,709 to 67,323) in 2019 and increased by 136.5%. Decomposition analysis showed that population growth and age structure change positively contributed to new incident cases. More than 80% of DALYs could be decreased by controlling risk factors, particularly tobacco use.ConclusionThe incidence, prevalence, and DALY rates of TBL cancer increased, and the death rate remained unchanged from 1990 to 2019. All the indices and contribution of risk factors decreased in men but increased in women. Tobacco is still the leading risk factor. Early diagnosis and tobacco cessation policies should be improved

    Assessment of energy audit and environmental impacts throughout the life cycle of barley production under different irrigation systems

    No full text
    This study aims to assess the energy audit and environmental impact of barley production throughout its life cycle under different irrigation systems. The case study focuses on the comparison of three irrigation systems: flood (FI), sprinkler (SI) and drip (DI). Data for the study will be collected from a barley farm in a representative region. Field measurements, interviews with farmers, and literature reviews will be conducted to gather the necessary information. Life cycle assessment (LCA) methodology will be used to analyze the energy audit and environmental impacts of each irrigation system. The energy audit will analyze the energy inputs and outputs at each stage of barley production, including land preparation, planting, irrigation, fertilization, pest control, harvesting, and transportation. The energy inputs will be quantified in terms of fossil fuel consumption, electricity usage, and other energy sources. The energy outputs will be measured in terms of barley yield and energy content. The environmental impacts assessment will consider various environmental indicators, such as greenhouse gas emissions, water consumption, soil erosion, and pesticide use. These indicators will be quantified for each irrigation system to determine their environmental footprint. The results of this study will provide valuable insights into the energy efficiency and environmental sustainability of different irrigation systems. It will help farmers, policymakers, and stakeholders make informed decisions regarding irrigation practices and promote sustainable agriculture. The findings can also be used to identify areas for improvement and develop strategies to save energy and reduce environmental impacts in barley production
    corecore