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In this study, an Artificial Neural Network (ANN) was applied to model yield and environ-

mental emissions from lentil cultivation in Esfahan province of Iran. Data was gathered

from lentil farmers using face to face questionnaire method during 2014–2015 cropping sea-

son. Life cycle assessment (LCA) was applied to investigate the environmental impact cate-

gories associated with lentil production. Based on the results, total energy input, energy

output to input ratio and energy productivity were determined to be 32,970.10 MJ ha�1,

0.902 and 0.06 kg MJ�1, respectively. The greatest amount of energy consumption was attrib-

uted to chemical fertilizer (42.76%). Environmental analysis indicated that the acidification

potential was higher than other environmental impact categories in lentil production sys-

tem. Also results showed that the production of agricultural machinery was the main hot-

spot in abiotic depletion, eutrophication, global warming, human toxicity, fresh water

aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity impact categories,

while direct emissions associated with lentil cultivation was the main hotspot in acidifica-

tion potential and photochemical oxidation potential. In addition, diesel fuel was the main

hotspot only in ozone layer depletion. The ANN model with 9-10-6-11 structure was identi-

fied as the most appropriate network for predicting yield and related environmental impact

categories of lentil cultivation. Overall, the results of sensitivity analysis revealed that farm-

yard manure had the greatest effect on the most of the environmental impacts, while

machinery was the most affecting parameter on the yield of the crop.

� 2016 China Agricultural University. Publishing services by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction fertility because of its symbiotic nitrogen fixing ability, espe-
Lentil (Lens culinaris) as a cool-season annual bushy plant or

pulse crop is a member of the legume family. Lentils are

grown for their high protein content (about 25%) and supply

specially the essential amino acids lysine and leucine for

human diet. The crop can play a major role in sustaining soil
cially in cereal-based cropping systems. In addition, its straw

can be used as animal feed [1,2].

Lentil as a human diet is one of the most common

legumes in the regions of Middle East and Asia. Iran ranks

tenth in the world in production of lentil with total produc-

tion of 78,500 tons and a world share of 1.6%. The cultivation

area of lentil in Iran is 140,000 ha which ranked the sixthmost

cultivated area in the world. Esfahan province is one of the

most important areas of lentil production in the country.
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Nomenclature

ANN Artificial Neural Network

ADP abiotic depletion potential

ACP acidification potential

DCB dichlorobenzene

DE direct energy

ER energy ratio

EP energy productivity

EUP eutrophication potential

FAEP freshwater aquatic ecotoxicity potential

FYM farmyard manure

FU functional unit

GWP global warming potential

GHG greenhouse gas

HTP human toxicity potential

INE indirect energy

IE irrigation energy

LCA life cycle assessment

LCI life cycle inventory

LM Levenberg–Marquardt

ME machinery energy

MAPE mean absolute percentage error

MAEP marine aquatic ecotoxicity potential

NMVOC non-methane volatile organic compounds

NRE nonrenewable energy

NEG net energy gain

OLDP ozone layer depletion potential

PHOP photochemical oxidation potential

RMSE root mean square error

RE renewable energy

SE specific energy

TEP terrestrial ecotoxicity potential
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About 12% of the total lentil production in Iran is supplied in

this province [3].

In Iran, despite the high cultivation area of lentil, its aver-

age yield is about 700 kg ha�1 (Anonymous, 2014) which is rel-

atively low in comparison to the average yield of 1800 kg ha�1

in Canada [4]. This comparison shows that increasing the

average yield can increase the profitability of lentil cultivation

and subsequently increase production [4]. Iranian lentil is

produced in a semi-mechanized agricultural system. Land

preparation, seeding and fertilization operations are generally

conducted in a mechanized manner while weeding, spraying

and harvesting operations are performed manually. The man-

ual harvesting operations of Iranian lentil is due to the short

height of the plant and lack of suitable harvesting machinery

that could cut the plant near the soil surface in the generally

stony land of farms in Iran. Also the right amount of chemical

fertilizers is not consumed in lentil cultivation and their con-

sumption is determined based on the farmer’s experience

that resulted in relatively high consumption of fertilizers.

Therefore the cost, energy use and environmental damages

in lentil production are unreasonably high. Regarding these

issues, more efficient use of energy and better environmental

management in lentil cultivation are important to provide a

sustainable production, therefore modeling the environmen-

tal impacts associated with lentil production was recognized

as important tool for both farmers and decision makers in

agriculture.

Life cycle assessment (LCA) methodology is applied for

environmental analysis of a product by establishing the

inventory of the energy and material inputs vs environmental

emissions brought about from each stage of the life cycle of

the product, from resource extraction until processing, appli-

cation, disposal and expressing the results in terms of impact

categories [5]. Nowadays, global warming is considered as one

of the most serious environmental impact categories man is

confronted with. Greenhouse gas (GHG) emissions from agri-

cultural production systems account for 11% of all manmade

GHG emissions [4,6]. Thus, LCA is becoming more and more
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important in the agro-food sector. A review of the literature

demonstrated that several researchers have assessed the

environmental impacts related to different agricultural prod-

ucts throughout their life cycle using LCA based on cradle to

grave approach [7–14].

Despite the importance of lentil production in Iran and

considerable amount of research work that has been assessed

and predicted the energy use and environmental impacts of

agricultural products, the number of publications accessed

these topics in the cultivation of lentil or even other legumes

is rather small. Abeliotis et al. [15] conducted an LCA study to

compare the production of three different varieties of bean in

Greece based on three different cultivation methods, i.e., con-

ventional, integrated and organic. Overall results showed that

integrated agricultural method could preferably be used to

establish the most environmentally friendly production sys-

tem among the three. Romero-Gámez et al. [8] evaluated the

environmental impacts attributed to green beans production

in three different cropping systems in Spain including screen

house, screen house equipped with misting system and crop-

ping in the open field by applying LCA. Koocheki et al. [16] per-

formed an energy input–output analysis of pulses (lentil, bean

and chickpea) production in Khorasan Razavi province of

Iran. It must be mentioned that they considered the embod-

ied energy in straw as the output energy, while in the present

study only the energy of lentil was considered as the output

energy.

Artificial Neural Network (ANN) technique has proved to

be of several applications for modeling, simulation and fore-

casting in the complex nonlinear systems in which there is

not any linear or simple relationship between inputs and out-

put(s). Capturing the underlying relationship is known as the

process of learning the network [17,18]. ANN models were

used to predict energy usage, yield and environmental emis-

sions related to agricultural products in various studies.

Khoshnevisan et al. [19] developed an ANNmodel for estimat-

ing output energy and GHG emissions in terms of global

warming potential (GWP) of potato production in Esfahan
rtificial Neural Networks and life cycle assessment in lentil farming in
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province of Iran as a function of input energies, i.e., human

labor, diesel fuel, electricity, seed, machinery, farmyard man-

ure, chemical fertilizers, biocides and irrigation water. They

deduced that modeling of both output energy and GWP was

performed with a high accuracy. Nabavi-Pelesaraei et al. [20]

applied ANN in modeling energy use and GWP of kiwifruit

production in Iran based on all inputs within the area. Pahla-

van et al. [21] developed an ANN model to estimate the pro-

duction yield of greenhouse basil in Iran based on energy

inputs. Safa and Samarasinghe [18] developed an ANN model

for predicting energy consumption in wheat production based

on farm conditions, farmers’ social considerations and energy

inputs in New Zealand. They mentioned that ANN model can

predict energy consumption relatively better than the applied

multiple linear regression model. In another study, ANN

model with Levenberg–Marquardt (LM) training algorithm

was applied to predict yield and GWP of watermelon produc-

tion in Guilan province of Iran [22]. Taghavifar and Mardani

[23] developed an ANN model to predict the yield and GWP

of apple production in West Azarbayjan of Iran on the basis

of input energies. They highlighted that ANN is a powerful

and robust tool for studding energy and environmental emis-

sions in agricultural systems.

To the best of authors’ knowledge, there is no study up to

date on the prediction of yield (output energy) and environ-

mental impact categories of lentil production using ANN

models in Iran and even all over the world. Although in all

the conducted studies in this field, only one environmental

impact category, i.e., GWP was considered. Therefore it is

essential to develop an ANN model that can predict simulta-

neously a number of environmental impact categories and

yield based on input energies. Therefore, the main objective

of the present study was to estimate the ten environmental

impact categories presented by CML2 baseline method and

yield of lentil production in Iran using ANN modeling tech-

nique. Accordingly, several ANN models were structured

and their performance for prediction of output parameters

evaluated using the statistical quality parameters. Finally,

the sensitivity analysis of the energy inputs on lentil yield

and the environmental impact categories were investigated.

2. Materials and methods

2.1. Case study region and data collection

This research was conducted in Esfahan province, located

between 30�420 and 34�300 N latitudes and 49�360 and 55�320

E longitudes, in the center of Iran [24]. The study covered

the rural areas in the five regions of the province including

Chadegan, Fereydonshahr, Fereydan, Tiran and Semirom.

The data was collected from 140 lentil farmers using a face

to face questionnaire method in 2014–2015 cropping season.

The total area of the investigated lentil farms in the studied

area was 163.5 ha. The average size of the lentil farms in

Chadegan, Fereydonshahr, Fereydan, Tiran and Semirom

regions were 1.12, 1.22, 1.38, 0.91 and 0.85 ha, which were

not statistically significant. It must be noted that in these

regions, apart from lentil, other important crops such as

wheat, sugar beet and chickpea were cultivated. Before the
Please cite this article in press as: Elhami B et al. Combined application of A
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data being collected, a pre-test survey was done; thus, a group

of farmers randomly selected and interviews conducted. For

sampling, simple random sampling method was used. The

sample size was determined using Cochran method as fol-

lows [25,26]:

n ¼ N� S2 � r2

ðN� 1Þe2 þ ðS2 � t2Þ ð1Þ

where ‘n’ denotes the calculated sample size, ‘N’ stands for

the number of lentil farmers in target population, ‘S’ presents

the standard deviation for the pre-tested data, ‘r’ denotes the

reliability coefficient (1.96 which represents 95% confidence)

and ‘e’ stands for the acceptable error, which was defined to

be 5% for a confidence level of 95%.

2.2. Energy balance in lentil cultivation

The input energy sources for lentil production in the region

included human labor, machinery, diesel fuel, farmyard man-

ure (FYM), chemical fertilizer, electricity, chemicals (pesti-

cides) and seeds while the produced lentil accounted as the

output energy.

In order to convert inputs and output materials into energy

forms, the energy equivalent coefficients was used as detailed

in Table 1. In this study, the corresponding energy coefficients

were extracted from the literature. These coefficients are con-

stant values that do not depend on the product type. For

example, diesel fuel and human labor in the production of

different products are of the same nature and have constant

coefficients for the conversion to their energy forms. Thus,

the energy consumption in various agricultural products dif-

fers in input values. Expressing the energy consumption in

lentil production using standard coefficients resulted in the

unique pattern of energy consumption of the crop. Therefore,

it will be possible to compare the energy consumption in dif-

ferent products or production systems.

To assess the energy consumption by agricultural machin-

ery in different farm operations, it was assumed that energy

use for the manufacturing of agricultural implements and

tractors be depreciated during their economic life time [27].

Therefore, the following formula was used to estimate

machine energy (ME) per hectare [27,28]:

ME ¼ G�Mp � t

T
ð2Þ

where ‘ME’ is the machine energy (MJ ha�1), ‘T’ is the eco-

nomic life of the machine (h), ‘G’ stands for the mass of the

machine (kg) and ‘t’ denotes the operation time of the

machine per unit area (h ha�1).

Irrigation energy (IE) was expressed as below [29]:

IE ¼ d� g�H� Q
g1 � g2

ð3Þ

where ‘IE’ is irrigation energy (J ha�1), ‘g’ is gravitational accel-

eration (9.81 m s�2), ‘d’ stands for the density of water

(1000 kg m�3), ‘Q’ presents the overall quantity of water

(m3 ha�1) including losses by evaporation, drainage run-off,

etc., ‘H’ denotes the total dynamic head (m), ‘g1’ is the pump

efficiency and ‘g2’ is representing the efficiency of the power-

ing system, either electric motor or diesel engine.
rtificial Neural Networks and life cycle assessment in lentil farming in
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Table 1 – Energy equivalent of inputs and output in lentil
production.

Input–output (Unit) Energy equivalent
(MJ per unit)

References

1. Inputs
Labor (h) 1.96 [21]

Machinery (kg)
Tractor 138 [29]
Plow 180 [29]
Disk 149 [29]
Boundaries 160 [29]
Leveler 149 [29]
Planter 133 [29]
Sprayer 129 [29]
Rotary Hoes 148 [29]
Thrashing (h) 62.7 [29]
Seed (kg) 14.7 [16]

Chemicals (kg)
Herbicide 238 [11]
Insecticide 101.2 [11]
Diesel (L) 47.8 [29]
Electricity (kWh) 11.93 [26]

Chemical fertilizer (kg)
Nitrogen (N) 78.1 [30]
Phosphate (P2O5) 17.4 [30]
Potassium (K2O) 13.7 [30]
Farmyard manure (kg) 0.3 [54]

2. Output (kg)
Lentil 14.7 [16]

4 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( 2 0 1 6 ) x x x –x x x
Other inputs including diesel fuel, human labor, electricity,

seed, chemicals, FYM and chemical fertilizers used through-

out lentil production were multiplied by their corresponding

energy equivalents (Table 1) to calculate their relevant energy

consumptions in unit of MJ ha�1.

The energy balance in agricultural crop production is

expressed in terms of some energy indices including the

energy ratio (ER), energy productivity (EP), specific energy

(SE) and net energy gain (NEG). Implementing energy balance

of agricultural products can be a very useful tool for decision

makers to compare and analyze various alternative products

with lentil in the study area. Based upon the energy taken

from the inputs vs that derived from output, ER (which is

indicative of the energy use efficiency defined as the ratio of

output energy to input energies), EP, SE and NEG were calcu-

lated as follows [29]:

ER ¼ output EnergyðMJ ha�1Þ
Input EnergyðMJ ha�1Þ ð4Þ

EP ¼ lentil out putðKg ha�1Þ
Energy inputðMJ ha�1Þ ð5Þ

SE ¼ Energy inputðMJ ha�1Þ
lentil outputðKg ha�1Þ ð6Þ

NEG ¼ Output EnergyðMJ ha�1Þ � Input EnergyðMJ ha�1Þ ð7Þ
Based on the type of energy sources, energy demand in

agriculture can be classified into direct (DE) and indirect

(IDE), renewable (RE), and non-renewable (NRE) energies. DE
Please cite this article in press as: Elhami B et al. Combined application of A
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is used directly in agriculture comes from a fossil origin such

as diesel fuel, gasoline, liquid petroleum gas, coal and from

electricity. IDE refers to the energy used to produce equip-

ment and other materials that are used on the farm. The

major IDE is contributed to chemical fertilizers, machinery

and water used in irrigation [29]. In this study, DE includes

energy derived from human labor, diesel fuel, water used in

irrigation and the electricity to power irrigation pumps while

INE covers energy that is embodied in seeds, FYM, machinery,

chemical fertilizers and chemicals.

RE and NRE are other forms of energy. RE is used to

describe energy sources that are replenished by natural pro-

cesses on a sufficiently rapid time-scale. Thus RE can be used

by humans more or less indefinitely, provided the quantity

taken per unit of time is not too great. On the other hand,

NRE term is used to describe energy sources that exist in a

limited amount on earth [30]. In this study, RE sources consist

of human labor, seeds, water used up in irrigation and FYM,

while NRE in the production of the crop is resulted from the

use of diesel fuel, chemicals, electricity, chemical fertilizers

and machinery.

2.3. Life cycle assessment methodology

LCA of any product is performed based on the cradle to grave

approach, i.e., from production of input materials using raw

materials to the produced lentil in the farms. This means that

the whole process of production is analyzed by considering all

inputs (raw materials and energy consumption) and their

interactions [31]. LCA specifies the environmental impacts

considering all materials emitted into air, soil and water

cause environmental burdens [32]. Based on ISO 14040, every

LCA methodology consists of four stages i.e. goal and scope

definition, inventory analysis of materials or processes, envi-

ronmental impact assessment and interpretation of the

results [33].

2.3.1. Goal and scope definition
Goal and scope definition is the first stage in an LCA study. It

defines the purpose of the study, describes the functional unit

and expected product of the study, the product system and its

boundaries, the approach of data collection and its processing

and finally the considered environmental impact categories.

To achieve a sharper understanding of the goal in LCA studies,

the boundaries of the system must be clearly defined. There-

fore all operations which contribute to the life cycle of the

product, process, or activity of interest are considered within

the system boundaries [34]. In this study, the total inputs

from the cradle (i.e., production of machinery, fertilizer and

pesticide from raw materials) to the farm gate (harvested len-

til) was considered as system boundary (Fig. 1). Determining

the functional unit (FU) in LCA is a key concept that makes

it possible to compare different products in a unique scale

[33]. In agricultural systems, generally two functional units

are considered, namely the mass-based and land-based. The

mass-based FU deals with the unit of mass of a product, e.g.

ton or kg of dry material, and land based FU is concernedwith

the unit of cultivated area, i.e. one cultivated hectare per year

[35]. Based on the relatively equal farm size about one hectare

and lentil yield in the studied area, considering FU as one cul-
rtificial Neural Networks and life cycle assessment in lentil farming in

http://dx.doi.org/10.1016/j.inpa.2016.10.004


Fig. 1 – The farm gate as system boundary of lentil production.
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tivated hectare is useful in analysis of the farms. Therefore,

these two FUs were considered simultaneously in this study

in order to be able to effectively clarify the environmental per-

formance of LCA of lentil production [19].

2.3.2. Life cycle inventory (LCI)
The inventory analysis corresponds to all resources required

for lentil production and all the emissions generated from

the production process considering the specific FU. In this

study, environmental emissions of lentil production were

divided into two parts. The first part called indirect emissions

refers to environmental impacts of inputs during their pro-

duction phase. The second part encompassed the direct emis-

sions associated with consumption of inputs in lentil

production as presented in Table 2. Direct emissions were

due to the diesel fuel consumption, application of fertilizers
Table 2 – Life cycle inventory data for lentil production.

Inputs Units Average

Seed kg 74.78

Chemical fertilizers
Nitrogen (N) kg 134.92
Phosphate (P2O5) kg 131.35
Potassium (K2O) kg 75.28
FYM kg 892.75
Herbicide
insecticide

kg
kg

2.07
3.05

Machinery kg 5752.96
Diesel fuel L 108.39
Labor h 201.10
Water for irrigation m3 366.82
Electricity kWh 565

Please cite this article in press as: Elhami B et al. Combined application of A
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(chemical fertilizers and FYM) and use of chemicals adopted

from literature, environmental reports and EcoInvent data-

base center [36,37], which is explained in the following.

The application of chemical fertilizers resulted in direct

emissions including emissions of ammonia, nitrogen monox-

ide and nitrogen oxides into the air and nitrate leaching to

groundwater. Several methodologies have been introduced

to estimate direct emissions of chemical fertilizers but

EMEP/EAA guidelines from the European Environmental

Agency [38] and IPCC guidelines [39] are the most relevant

ones.

Crop production in the study region is extensively related

to the application of nitrogen fertilizers. Based on IPCC guide-

lines [39], by application of 100 kg of nitrogen fertilizers,

1.25 kg of N2O is emitted into the air. Also, Galloway et al.

[40] reported that 2% of the total nitrogen fertilizer is emitted
Max Min SD

90 60 6.37

200 100 27.41
180 100 23.81
150 0 42.35
5000 0 1921.84
3.26
4.66

1.39
1.99

0.47
0.77

7320 4430 895.27
140 80 611.7
245 170 29.69
350 260 132.55
800 450 107.07

rtificial Neural Networks and life cycle assessment in lentil farming in
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in the form of NOx and likewise, 8% of the total nitrogen

applied is emitted in the form of NH3. In addition, it was

assumed that 30% of nitrogen fertilizers in the form of nitrate

(NO3
�) are leaching from soil into the groundwater [41]. The

use of phosphorus (P) fertilizers resulted in emissions to soil

and water. Phosphate (P2O5) emissions in the form of phos-

phorus is calculated through an equilibrium, in which seed

and fertilizers are inputs and lentil and accumulated phos-

phorus in the soil are considered as outputs. About 2.9% of

the total phosphorus fertilizers in the soil leaches from soil

profile in the form of phosphate. The average amount of

phosphorus leached to groundwater was considered as

0.22 kg P-based fertilizers per ha [42]. Pesticides may contain

either a single or a combination of two or more active ingre-

dients. Throughout the present study, herbicides and insecti-

cides were considered as a single input referred to as

‘‘pesticides”. Van den Berg and Ashmore [43] have estimated

that 30–50% of applied pesticides in agricultural crop spraying

are emitted into the air due to spray drift and volatilization.

Within the lentil production, diesel fuel was used up by

tractors in different farm operations. Direct emissions from

combustion of diesel fuel into air in farm operations was cal-

culated by multiplying the amount of consumed energy of

diesel fuel per hectare by the emission factors based on

Ecoinvent database due to its completeness. The values of

various emission factors applied in this study derived from

data given by Nemecek and Kagi [44] are presented in Table 3.

Accordingly, all of the emissions from diesel fuel combustion

can be released into air which is obtained by multiplying the

emission factors by the amount of consumed energy from

diesel fuel per hectare.

2.3.3. Life cycle impact assessment
Life cycle impact assessment as the third LCA step investi-

gates the environmental impacts associated with emissions

and consumption of resources in a production system. This

step consists of a number of compulsory vs voluntary steps.

The compulsory steps involve translating the inventory data
Table 3 – Emission factors for 1 MJ energy production from
diesel fuel based on EcoInvent.

Emission Amount (g/MJ diesel)

Carbon dioxide (CO2) 74.5
Sulfur dioxide (SO2) 2.41E�02
Methane (CH4) 3.08E�03
Benzene 1.74E�04
Cadmium (Cd) 2.39E�07
Chromium (Cr) 1.19E�06
Copper (Cu) 4.06E�05
Dinitrogen monoxide (N2O) 2.86E�03
Nickel (Ni) 1.67E�06
Zinc (Zn) 2.39E�05
Benzo(a)pyrene 7.16E�07
Ammonia (NH3) 4.77E�04
Selenium (Se) 2.39E�07
PAH (poly cyclic hydrocarbons) 7.85E�05
Hydro carbons (HC, as NMVOC) 6.80E�02
Nitrogen oxides (NOx) 1.06
Carbon monoxide (CO) 1.50E�01
Particulates (<2.5 lm) 1.07E�01
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of input materials and production processes into their contri-

butions to a number of specified environmental impact cate-

gories (impact characterization). The voluntary steps are

traditionally directed at evaluating the results of impact cate-

gories while considering each other (normalization) [45]. Lit-

erature review indicated that, CML 2 baseline 2000

V2.05/world 1997/characterization method developed by Lei-

den University is commonly used in LCA studies of agricul-

tural products. Additionally, application of this method had

been the most frequent approach to analysis of the life cycle

in the production systems [46]. To perform impact assess-

ment, CML 2 baseline 2000 V2/world method and its ten envi-

ronmental impact categories were applied in this study. The

selected impact categories were eutrophication potential

(EUP), abiotic depletion potential (ADP), acidification potential

(AP), human toxicity potential (HTP), global warming poten-

tial (GWP), freshwater aquatic ecotoxicity potential (FAEP),

marine aquatic ecotoxicity potential (MAEP), terrestrial eco-

toxicity potential (TEP), photochemical oxidation potential

(PHOP) and ozone layer depletion potential (OLDP). The mea-

surement units for these impact categories can be found in

Table 4. The prevalence of the selected impact categories

was observed in most of the studies [8,10,11].

The index for each impact category is calculated using Eq.

(8) [47] as follows:

ICIi ¼
X
i

½ðEj or RjÞ � CFij ð8Þ

where ICIi is indicator value per functional unit for impact

category i; Ej or Rj is the emission of jmixture or the consump-

tion of j resource on each functional unit; CFij is the character-

ization factor for j mixture in impact category i. The

characterization factor in each impact category shows the

mixture potential for creating the impact.

The LCA analysis was conducted using SimaPro V8.03 soft-

ware as one of the most common LCA software for analysis of

the environmental burdens of a product through its life cycle.

2.3.4. Interpretation of the LCA results
In the fourth stage of the LCA, all the results will be analyzed

in order to investigate the environmental conditions resulted

from production system and provide solutions. LCA results

obtained in this study will be discussed in the results section.

2.4. Development of ANN models

Selection of the appropriate inputs parameters of the ANN

model is the key step of model development. Nine input ener-

gies including human labor, diesel fuel, machinery, chemical

fertilizers, chemicals, FYM, electricity, water for irrigation and

seeds were considered as inputs to the ANN model, while ele-

ven output parameters, i.e. lentil yield and ten environmental

impact categories were considered as model outputs. To

ensure the suitability of this selection, the relationship

between dependent variables (input energies) and indepen-

dent variables (outputs of the model) was analyzed statisti-

cally by SPSS software. Based on the evaluation results,

there were significant correlations between inputs and out-

puts while the correlations between inputs were not statisti-

cally significant.
rtificial Neural Networks and life cycle assessment in lentil farming in
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Table 4 – Environmental indices categories and measurement units for each category.

Impact categories Nomenclature Measurement units

Abiotic depletion potential ADP kg Sb eq.
Acidification potential ACP kg SO2 eq.
Eutrophication potential EUP kg PO4

2� eq.
Global warming potentiala GWP kg CO2 eq.
Ozone layer depletion potential OLDP kg CFC-11 eq.
Human toxicity potentiala HTP kg 1,4-DCB eq.b

Freshwater aquatic ecotoxicity potential FAEP kg 1,4-DCB eq.b

Marine aquatic ecotoxicity potential MAEP kg 1,4-DCB eq.b

Terrestrial ecotoxicity potentiala TEP kg 1,4-DCB eq.b

Photochemical oxidation PHOP kg C2H4 eq.

a Considering 100 years.

b DCB = dichlorobenzene.
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ANN models are excellent nonlinear modeling tools which

can efficiently find the existing deterministic relation

between input and output variables by composition of activa-

tion functions andweights. In this study, several feed-forward

back-propagation neural networks with an input layer, one or

more hidden layers and a single layer of output neurons were

evaluated and trained using the collected data. In this study,

the sigmoid and linear transfer functions were respectively

applied for the hidden layers and the output layer. LM training

algorithm as one of the most common learning rules in ANN

was used for network training. In feed-forward back-

propagation neural network, the information flows only in

the forward direction, from inputs to outputs. The input vec-

tor is directly passed to the node activation output of input

layer without any computation. The hidden layer with sig-

moid activation function performs intermediate computa-

tions. Then, the linear output layer generates the network

output. Neurons of the hidden layer with suitable nonlinear

transfer functions are applied to process the information by

the input nodes received [48].

In this study, the output of the network is given by follow-

ing equation [49]:

yt ¼ a0 þ
Xn
j¼1

ajf
Xm
i¼1

bijyt�i þ b0j

 !
þ et ð9Þ

where ‘n’ is the number of hidden nodes, ‘m’ is the number

of input nodes and ‘f’ stands for a transfer function, i.e., sig-

moid function in this study which is defined as

fðxÞ ¼ 1
1þexpð�xÞ. Also, bij; i ¼ 1; 2; . . . ;m; j ¼ 0;1; . . .

n
;ng are

weights from the input to the hidden nodes, while, the vec-

tors of weights from the hidden to the output nodes are rep-

resented as aj; j ¼ 0;1; . . . ;ng�
, moreover ‘a0’ and ‘boj’ denote

the weights of arcs leading from the bias terms, which are

of values always equal to 1.

Basic information on inputs and outputs in lentil farms in

the form of input and output matrixes was entered into Mat-

lab V7.14 (R2012a) software package to perform ANN analysis.

MATLAB software was used to train and test the developed

ANNs on a personal computer. The input and output data sets

are matrixes composed of vectors specific to each farm. The

input vector includes nine input energies while output vector

covers eleven output parameters, i.e., yield and ten impact

categories in any farm. Moreover, inputs and outputs data
Please cite this article in press as: Elhami B et al. Combined application of A
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were normalized in the range of 0–1 and then returned to

original values after the simulation. In this study, data col-

lected from 80, 20 and 40 lentil farmerswere respectively used

for training, cross validation and testing of the developed

ANN models.

For the development of ANN models, several networks

were built up and tested using the experimental data to deter-

mine the most appropriate ANN arrangement for predicting

the output parameters. In this research, 80, 20 and 40 units

were respectively used for training, cross validation and test-

ing of ANNmodels. Accordingly, the most acceptable topology

was identified by the highest R2 value vs the lowest RMSE as

well as MAPE values.

To assess the performance of the developed ANN models

for estimating the desired output in lentil production, some

statistical quality parameters including mean absolute per-

centage error (MAPE), root mean square error (RMSE) and

coefficient of determination (R2) were employed as follows

[18,21]:

MAPEð%Þ ¼ 100
n

Xn
t¼1

j ðti � ziÞ
ti

j ð10Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðti � ziÞ2
s

ð11Þ

R2 ¼ 1�
Pn

i¼1ðti � ziÞ2Pn
i¼1t

2
i

" #
ð12Þ

where ‘ti’ and ‘zi’ are respectively the actual and predicted val-

ues by the ANN model and ‘n’ denotes the total number of

data. Relative percentage deviation between the predicted

and measured values was evaluated by MAPE. The MAPE

value smaller than 10% was considered to be the acceptable

value. The smaller the values of MAPE and RMSE are, the bet-

ter performance of the ANN model is achieved. The coeffi-

cient of determination was used to determine that how well

the model approximates the real data points; That is, a model

acts more efficiently and accurately when R2 values are closer

to unity.

Sensitivity analysis investigates the influence of input

parameters of the model on the model outputs. It can rank

and specify the influential input parameters on yield and

environmental emissions. To analyze the sensitivity of energy
rtificial Neural Networks and life cycle assessment in lentil farming in
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inputs on yield and ten environmental impact categories in

lentil cultivation, sensitivity analysis via ANN was conducted

using the NeuroSolutions V5.07 software package [50]. In this

study, the sensitivity analysis reveals clearly the contribution

of input parameters of the best ANN model on the desired

outputs, i.e., lentil yield and assessed environmental impact

categories. By considering the analysis, it becomes evident

that the analysis is of a great assistance in making it feasible

to judge what parameters should be considered as the most

significant vs the least significant ones during the generation

a satisfactory model [21].

3. Results and discussion

3.1. Analysis of input–output energy use in lentil
production

Various energy inputs used in the production of lentil and

their percentage share from the total energy inputs are given

in Table 5. The average of total input energy for cultivating

one hectare of lentil and the energy output calculated were

32,970.10 MJ ha�1 and 29,746.50, respectively. Also, a detailed

description of the share of each input energy to the total input

energy is shown in Fig. 2. Based on the results, the energy

related to chemical fertilizers amounting to 13,855 MJ ha�1

contributed the highest share (42.76%) from the total energy

input in lentil production within the region. Energy contribu-

tion related to chemical fertilizers N, K2O and P2O5 amounted
Table 5 – Amounts of energy inputs and output in lentil produc

Inputs/output Min (MJ/ha) Max (MJ/ha

A. Inputs
1. Human labor 333.2 480.2
2. Machinery 246.33 1144.53

(a) Tractor
(b) Plow
(c) Disk
(d) Boundaries
(e) Leveler
(f) Planter
(g) Sprayer
(h) Rotary Hoes
(i) Thrashing

66.59 517.03
50 105
20 85
0 14.4
0 6.5
70 150
0 135
0 75

10 32.8
3. Diesel fuel 3824 6692
4. Chemical Fertilizers 9550 20,807

(a) Nitrogen
(b) Phosphorus (P2O5)
(c) Potassium (K2O)

7810 15,620
1740 3132
0 2055

5. Farmyard manure (FYM) 0 1500
6.Chemical 535 1250

(a) Herbicide
(b) (b) Insecticide

333 778
202 472

7. Water for irrigation 2849.73 4964.47
8. Seed 882 1323
9.Electricity 5400 9600
Total energy input 23713.13 45901.91

B. Output
Total energy output 26,460 33,075

Please cite this article in press as: Elhami B et al. Combined application of A
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to 76.05%, 16.47% and 7.48% of total energy of chemical fertil-

izers, respectively. Following chemical fertilizers, the parame-

ters of electricity, diesel fuel and irrigation water were the

main energy consuming inputs with values of 20.92%,

15.99% and 12.21%, respectively in lentil production. The total

share of all five input energies related to seed, chemicals,

machinery, human labor and FYM was 8.12% of total input

energy.

Koocheki et al. [16] reported that diesel fuel energy made

up 24.36% of total energy, followed by irrigation water

(18.79%), chemical fertilizers (18.52%) and electricity (13.27%)

for lentil production in Khorasan Razavi province of Iran. As

mentioned before, energy and environmental analyses in pro-

duction of crops from legume family are very sparse, there-

fore the energy use profile for production of some

agricultural products were assessed. Many studies presented

similar results and revealed that chemical fertilizers and die-

sel fuel are the most energy consuming inputs in production

of agricultural products [19,21,26,51,52]. Excessive use of

chemical fertilizers in agricultural systems generates such

environmental burdens as nitrogen loading and carbon emis-

sions in the environment causing degradation of water qual-

ity [53]. In Iran, the primary fuel source for electricity

generation is fossil fuels, and since the electric power trans-

mission system is outdated; thus, the efficiencies in electric-

ity production and transmission are low. Also, use of old and

inefficient agricultural tractors and implements in field oper-

ations increases the diesel fuel consumption. For time man-
tion.

) SD Average (MJ/ha) Percentage (%)

29.69 394.17 1.21
199.45 631.7 1.94
102.38 236.37 0.72
9.80 66.85 0.20
14.19 47.46 0.14
3.62 7.38 0.02
2.38 2.72 0.00
18.52 106.41 0.32
31.26 74.53 0.23
19.26 45.91 0.14

4.68 18.17 0.05
611.70 5181.17 15.99
2983.84 13854.87 42.76
2141.41 10537.92 32.52
414.40 2285.61 7.05
580.22 1031.34 3.18
576.55 267.85 0.82
180.51 803.75 2.48
112.87 494.37 1.52
78.19 309.38 0.96
484.52 3957.21 12.21
93.66 1099.35 3.39
1284.84 6780 20.92
5901.19 32970.10 100

1751.00 29746.50 100
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Fig. 2 – The share of total mean energy inputs in lentil production.
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agement and economy in fuel consumption, it is essential

that the machinery and equipment work at their highest field

capacities.

Table 6 presents the values of lentil yield (kg ha�1) and val-

ues of energy indices of ER, EP, SE and NEG for lentil produc-

tion. Also, total input energy consumed in different forms as

DE, IDE, RE and NRE (MJ ha�1) are given in this table. The aver-

age value of ER index in lentil cultivation was calculated on

0.902 indicating that energy use in lentil production is virtu-

ally inefficient in the study region. Other researchers have

reported similar results i.e. 0.72 for lentil by considering only

lentil in calculation of output energy [16], 0.96 for cherry [25],

1.16 for apple [54] and finally 1.1 for potato [55]. The average

yield in the study region was calculated as 2,023.57 kg ha�1

while the average yield of 696.6 kg ha�1 in Khorasan Razavi

province of Iran was reported by Koocheki et al. [16]. This

comparison shows that the lentil yield in Esfahan province

is relatively high with respect to other regions of the country.

The average values of energy indices i.e. SE, NEG and EP in

lentil production were calculated as 16.82 MJ kg�1,

�3,223.61 MJ ha�1 and 0.06 kg MJ�1, respectively. NEG is nega-

tive, therefore it could be concluded that, in lentil production,

energy is being lost.
Table 6 – Lentil yield, energy indices and different form of ener

Items Unit Min

Yield kg ha�1 1800.00
Energy use efficiency – 0.70
Specific energy MJ kg�1 13.18
Energy productivity kg MJ�1 0.04
Net energy MJ ha�1 �13561.90
Direct energy MJ ha�1 12426.54
Indirect energy MJ ha�1 11221.01
Renewable energy MJ ha�1 4084.53
Non-renewable energy MJ ha�1 19563.01
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The total energy use in the form of DE and IDE were calcu-

lated as 16,312.55 (49.47%) and 16,657.54 (50.53%), respec-

tively. It is clear that DE and IDE have same contribution in

input energy of lentil cultivation. The share of RE was

17.34% (5718.58 MJ ha�1) while that of NRE form was 82.66%

(27,251.52 MJ ha�1), respectively. It is clear from Table 6 that

in comparison with RE, the contribution of NRE is higher, thus

lentil production is most dependent on NRE sources (such as

chemical fertilizers and fossil fuels). Several researchers pre-

sented similar results that the contribution of NRE was higher

than that of RE for different agricultural products

[16,23,53,56].

3.2. Interpretation of LCA results in lentil production

On the basis of the models presented by SimaPro software,

more than 1600 emissions from rawmaterials were generated

including emissions emitted into air, soil and water. Accord-

ingly, a part of inventory emissions to air, soil and water asso-

ciated with inputs used in lentil production are tabulated in

Table 7. As shown, the emission values related to CO2, SO2,

CH4, N2O and CO were determined as 385997, 124, 15, 14

and 777 g ha�1, respectively. The type of fertilizer is the main
gy in lentil production.

Max Average SD

2250.00 2023.57 119.11
1.11 0.902 0.10
20.86 16.29 2.00
0.07 0.06 0.007
2722.86 �3223.60 4296.49
21511.02 16312.55(49.47%) 2264.72
25747.1 16657.54(50.53%) 3727.22
7929.31 5718.58(17.34%) 981.19
37972.70 27251.52(82.66%) 5043.70
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Table 7 – Some environmental emissions of lentil production per hectare.

Type of emissions Emission source Unit Amount (Unit ha�1)

A. To air
1. Carbon dioxide (CO2) Diesel fuel g 385997.1650
2. Sulfur dioxide (SO2) Diesel fuel g 124.8661
3. Methane (CH4) Diesel fuel g 15.9580
4. Benzene (C6H6) Diesel fuel g 0.9015
5. Di nitrogen monoxide (N2O) Diesel fuel g 14.8182
6. Ammonia (NH3) Diesel fuel g 2.4714
7. Hydrocarbons (HC, as NMVOC) Diesel fuel g 352.3195
8. Nitrogen oxides (NOx) Diesel fuel g 5492.0402
9. Carbon monoxide (CO) Diesel fuel g 777.1755
10. Particulates (<2.5 mm) Diesel fuel g 544.3851
11. Di nitrogen monoxide (N2O) Fertilizer kg 1.686
12. Nitrogen oxides (NOx) Fertilizer kg 2.698
13. Ammonia (NH3) Fertilizer kg 10.793

B. To soli
1. Pesticide pesticide kg 2.048
2. Nitrate (NO3

�) Fertilizer lg 81.1108
3. Cadmium (Cd) Fertilizer mg 62.6834
4. Cobalt (Co) Fertilizer mg 3.3794
5. Zinc (Zn) Fertilizer mg 187.1091
6. Lead(Pb) Fertilizer mg 35.8289

C. To water
1. Nitrate(NO�

3 ) Fertilizer kg 40.48
2. Phosphorus Fertilizer kg 29.68

Table 8 – Life cycle impact impacts per two distinctive FUs.

Impact category Mass based
FU: 1 ton

Land based
FU: 1 ha

Abiotic depletion 17.98 36.38
Acidification 81.97 165.57
Eutrophication 2.12 4.28
Global warming (GWP100) 3593.72 7259.31
Ozone layer depletion (ODP) 0.00037 0.00074
Human toxicity 2289.75 4625.29
Fresh water aquatic ecotoxicity 62.53 126.31
Marine aquatic ecotoxicity 230051.2 464703.42
Terrestrial ecotoxicity 12.61 25.47
Photochemical oxidation 7.21 14.56
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determinant of emissions at all the farm levels. N2O, NOx and

NH3 emitted by the fertilizers at 1.68, 2.69 and 10.79 kg ha�1

significantly and negatively affect the air in the studied region

(Table 7). Nemecek et al. [57] demonstrated that, N2O and CO2

emissions from chemical fertilizers made high contributions

to GWP. Emissions from pesticide were assumed to end up

in the agricultural soils, thus, pesticide emission to soil was

tested and found out to be 2.048 kg ha�1. Elements, such as

NO3
- , Cd and Pb that are released from fertilizers, affect both

water and soil (Table 7).

The values of environmental impact categories on the

basis of the mass based and land based FUs in lentil cultiva-

tion are presented in Table 8. The values of environmental

impact categories related to one ha of lentil cultivation were

approximately two times the relevant impact categories for

one ton of produced lentil. This is due to the fact that the yield

of lentil is approximately 2 tons per ha. Based upon the
Please cite this article in press as: Elhami B et al. Combined application of A
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obtained results, GWP was estimated at 4284.87 kg CO2 eq.

t�1. Considering the lack of availability of similar research

on lentil production in the literature, the results are compared

with those of other agricultural crops produced. In a study in

Chile, GWP for sunflower and rapeseed productions were esti-

mated about 890 and 820 kg CO2 eq. t
�1, respectively [58].

Bartzas et al. [59] determined that production of barely in

Spain and open field production of fresh lettuce in Italy

created the total GWP impacts of 171 and 243 kg CO2 eq. t
�1,

respectively. Abeliotis et al. [15] reported that the calculated

GHG emissions related to the production of three bean vari-

eties in different cultivation methods varied in the range of

86–438 kg CO2 eq. per ton of product. Romero-Gámez et al.

[8] demonstrated that GHG emission varied from 101 to

2890 kg CO2 eq per ton of bean. The highlighted that the use

of both screen house and screen houses equipped with mist-

ing systems produced the high air emissions due to the man-

ufacture of steel structures, the processing of concrete, and

the manufacture of plastics that constituted these systems.

It must be noted that in a similar cropping system to lentil,

total GHG emissions of green bean cropping in the open field

is 136 kg CO2 eq t�1 which is substantially lower than that of

lentil production in the present study. This difference to some

extent is due to the different moisture content of green bean

and lentil. Overall comparisons shows that the impact cate-

gories in this study are different from other studies. This high

difference can be interpreted by large application of such agri-

cultural inputs as fertilizers and direct emissions in lentil

cultivation.

A percentage contribution of production processes and

inputs involved in lentil farming to the selected impact cate-
rtificial Neural Networks and life cycle assessment in lentil farming in

http://dx.doi.org/10.1016/j.inpa.2016.10.004


Fig. 3 – Percentage contribution of inputs and processes per environmental impact categories in lentil cultivation.
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gories is presented in Fig. 3. The production of agricultural

machineries was the one that mostly contributed in the six

impact categories, contributing for 67.78%, 62.63%, 58.62%,

42.14%, 36.93% and 27.27% to HTP, GWP, ADP, TEP, MAEP and

FAEP respectively. In a similar study on evaluation of the envi-

ronmental impacts as regards chickpea production in Iran,

application of LCA revealed that GWP, ADP, HTP, MAEP and

TEP were dominated by agriculture machinery [11]. In order

to reduce the environmental burdens related to agricultural

machineries, it will be necessary to increase the sizes of the

farms by integration, to prevent farms shrinking when a farm

is transferred to the next generation and to perform different

agricultural operations with combined machineries such as

combined equipment for plowing and seed bed preparation.

Also in the impact categories of ACP and PHOP, the direct

emissions from diesel fuel and chemical fertilizers associated

with lentil cultivation were important among all input cate-

gories with the shares of 78.62% and 62.49%, respectively. Die-

sel fuel with the share of 62.21% had the highest

environmental impact on OLDP followed by agricultural

machinery with 17.16% contribution.

Marucci et al. [60] concluded that the environmental impact

from the use of agrochemicals was greater in greenhouse crop

production as compared with open-field farming; also, they

showed that, on opposite trend existed in terms of herbicide

use, with greater quantities applied in the open-field. The
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MAEP impact category was dominated by machinery and N-

based fertilizer while in FAEP, the use of machinery and FYM

was important. In LCA of rose cultivation in Ethiopia by Sahle

and Potting [45], the production of fertilizerswas themain con-

tributor toMAEP, HTP, ADP and TEP. The use of right amount of

chemical fertilizers and FYMat different growth stages of lentil

cultivation based on the soil testing results and expert’s opin-

ionswill have a significant impact in reducing direct emissions

associated with these inputs. Also, the use of compost pro-

duced from agricultural wastes for the fertilization of crops

was investigated as a promising alternative waste manage-

ment option [61]. Regarding the consumption of diesel fuel,

the use of clean fuels such as biodiesel and bio-ethanol instead

of fossil fuels not onlywill reduce the negative impacts to envi-

ronment, but alsowill provide the higher energy use efficiency

[29,62]. In terms of environmental burdens, irrigation water

and K2O chemical fertilizer seemed the least impacting inputs

approximately in all of the impact categories.

To better determine the relative magnitude of each impact

category within the production of lentil, normalized values of

impact categories were utilized. The normalized values of

selected impact categories are presented in Fig. 4. Normaliza-

tion is the calculation of the magnitude of the impact cate-

gory results with respect to reference values where the

different impact potentials and consumption of resources

are expressed on a common scale through relating them to
rtificial Neural Networks and life cycle assessment in lentil farming in
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Fig. 4 – Normalized impact categories of lentil production.

Table 9 – Network performance of lentil yield and environ-
mental prediction for the best topology.

Item R2 MAPE (%) RMSE

Yield 0.9039 0.0382 0.1493
ADP 0.9726 0.1209 0.1276
ACP 0.9823 0.0041 0.1145
EUP 0.9850 0.0197 0.1109
GWP 0.9834 0.0003 0.1024
OLDP 0.9956 0.0111 0.0574
HTP 0.8993 0.2085 0.1944
FAEP 0.9641 0.1781 0.1244
MAEP 0.9793 0.1042 0.1053
TEP 0.9844 0.0901 0.0948
PHO 0.9744 0.0659 0.1292
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a common reference, in order to facilitate comparisons

between impact categories. The normalized values of all

impact categories are dimensionless, thus their comparison

is more readily applicable [34,63]. The magnitude of ACP

was significantly higher than that of other impact categories

followed by MAEP and PHOP. Since ACP was dominated by

direct emission resulted from the application of chemical fer-

tilizers, FYM and diesel fuel, any savings made in

consumption of diesel fuel and fertilizers would cause a

reduction in the ACP impact category. The normalization in

this study moves the attention toward reduction of ACP

impact category and reduction of other impact categories at

the same time.

3.3. ANN model development

Investigation of different ANN models revealed that the best

fitted ANN model consisted of an input layer with nine input

variables, two hidden layers of each ten and six neurons,

respectively, and one output layer with eleven output vari-

ables, i.e., 9-10-6-11 structure. The statistical criteria of the

best ANN model for predicting yield and environmental

impact categories of lentil is tabulated in Table 9. According

to the statistical criteria of the developed ANN model, namely

R2 values in the range of 0.8993–0.9956, MAPE in the range of

0.0003–0.2085%, RMSE related to impact categories in the

range of 0.0574–0.1292 and RMSE related to yield about

0.1493 kg, it can be concluded that all the considered ANN

model provide a very satisfactory prediction results. On the

other hand, lentil yield and environmental impact categories

predicated by the best ANN model tended to quite closely fol-

low the corresponding actual ones. Accordingly, this model

was identified as the most appropriate solution for estimating
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the lentil production yield and related environmental impact

categories.

Pahlavan et al. [21] reported that an ANN model with 7-20-

20-1 structure was the best network for predicting basil pro-

duction yield. Khoshnevisan et al. [10] demonstrated that an

ANN model including an input layer with 11 neurons, two

hidden layers with six neurons in the first hidden layer and

ten neurons in the second hidden layer and an output layer

with two neurons was the best network for estimating the

total yield and GWP in the strawberry production system.

Their results revealed that the obtained structure can predict

the desired outputs with high accuracy. Khoshnevisan et al.

[19] for predicting the output energy and GWP of potato pro-

duction, applied the best fitted ANN model consisted of an

input layer with twelve inputs, one hidden layer with eight

neurons and an output layer with two output variables, i.e.,
rtificial Neural Networks and life cycle assessment in lentil farming in
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Fig. 5 – Comparison between measured and estimated values of yield and environmental impact categories of lentil

production using best developed ANN model.

Table 10 – Sensitivity analysis results for input energies.

Sensitivity Yield ADP ACP EUP GWP OLDP HTP FAEP MAEP TEP PHO

Seed 5.150 0.139 0.218 0.051 17.003 0.00030 14.752 0.176 2323.010 0.122 0.021
Fertilizers 10.098 0.509 0.614 0.198 79.230 0.00070 71.333 5.755 9195.634 0.956 0.048
FYM 11.0800 2.452 4.454 1.012 446.166 0.00370 79.410 23.890 21660.367 3.464 0.316
Chemical 1.3035 0.588 0.975 0.221 86.709 0.00020 28.066 5.264 6259.28 0.851 0.075
Machinery 17.8013 1.528 1.692 0.407 119.936 0.00015 155.743 12.057 25316.397 2.243 0.181
Diesel fuel 11.2343 0.295 0.436 0.137 49.490 0.00060 54.276 0.439 6596.823 0.321 0.040
Labor 6.4066 0.266 0.292 0.084 46.796 0.00220 46.197 0.273 6146.356 0.269 0.036
Irrigation 4.4657 0.461 0.685 0.170 17.494 0.00250 44.454 2.967 7078.624 0.616 0.060
Electricity 0.9541 0.387 0.510 0.108 31.656 0.00001 26.755 2.812 5295.476 0.517 0.502
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12-8-2 ANN structure. This network had the least MAPE for

output energy and GWP and the highest R2 and the least RMSE

for GWP. In an ANN model developed by Taghavifar and Mar-

dani [23] the best network was the 8-16-2 structure. The R2

values of 0.9879 and 0.9827 were obtained for yield and GWP

prediction of apple production in Iran, respectively. Nabavi-

Pelesaraei et al. [20] predicted energy use and GWP of kiwi-

fruit production using an ANN model with 12-9-9-2 structure.

The R2 values of the best network were calculated as 0.987

and 0.992 for yield and GHG emissions, respectively, demon-

strating the high accuracy of the model. Nabavi-Pelesaraei

et al. [22] predicted yield and GWP of watermelon production

using ANNs. They reported that selected ANN model was of

the potential of predicting yield and GWP by respective coef-

ficients of determination of 0.96 and 0.99.

Fig. 5 demonstrates the scatter plots of the predicted yield

and environmental impact categories versus actual values for

the training and testing data sets. The predicted and actual

values were found out in good agreement with each other.

Coefficients of determination for these indices demonstrated
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the potential capability of the developed ANN model for pre-

diction of yield and environmental impacts in lentil produc-

tion in the studied area.

3.4. Sensitivity analysis

Considering the best selected ANN model, a sensitivity analy-

sis was performed to assess the prediction validity and capa-

bility of the developed models. The results of the sensitivity

analysis are given in Table 10. The sensitivity values of the

most effective input parameter on each output parameter

are shown in bold type. As clearly shown, machinery related

energy had the highest effect on lentil yield with sensitivity

value equal to 17.80, followed by diesel fuel and FYM energies.

It was also found that the sensitivity concerning electricity on

lentil yield was the lowest among all inputs. In the case of

environmental impact categories, all the indices except HTP

and MAEP were discerned as sensitive to the FYM energy. Fur-

thermore, the highest sensitivity was determined for agricul-

tural machinery for both impact categories of HTP and MAEP.
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4. Conclusions

The total input energy and output energy in lentil production

were calculated as 32,970.10 and 29,476.50 MJ ha�1, respec-

tively. On the average, the share of DE was 49.47% of total

energy input expended in lentil production, while the contri-

bution of IDE being 50.53%. The share of input as RE and NRE

energies were recorded as 17.34% and 82.66%, respectively.

Chemical fertilizers (42.76%), electricity (20.92%) and diesel

fuel (15.99%) demonstrated their pivotal roles in total energy

consumption. The high contribution of chemical fertilizers

energy in total energy consumption (42.76%) revealed the

high potential for reducing fertilizer application. The most

significant impact categories are related to agricultural

machinery employed in seedbed preparation and in sowing

operations. Therefore, an application of either no-tillage or

reduced tillage systems could reduce the use of machinery,

thus diminishing some of these impacts. The direct emis-

sions in lentil cultivation resulted from high application of

chemical fertilizers and diesel fuel contribute considerably

to some environmental impacts, notably ACP and PHOP. Also,

diesel fuel would considerably dominate in OLDP. Therefore,

it suggested establishing a sustainable and environmental

friendly lentil production system in the region with applica-

tion of alternatives such as no-till and reduced tillage sys-

tems, use of clean fuels instead of fossil fuels and more

efficient fertilizers application by integrated nutrient man-

agement. The ANN model with 9-10-6-11 structure was deter-

mined as the most appropriate model for predicting the lentil

yield and its related environmental impacts.
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