310 research outputs found

    Lactic acid and biomethane production from bread waste: a techno-economic and profitability analysis using pinch technology

    Get PDF
    Lactic acid (LA) is a vital platform chemical with diverse applications, especially for biodegradable polylactic acid. Bread waste (BW) is sugar-rich waste biomass generated in large quantities in residential and commercial operations. Recently, we evaluated the potential of BW for LA production by Bacillus coagulans under non-sterile conditions. This work presents a techno-economic and profitability analysis for valorizing 100 metric tons of BW per day to alleviate environmental pollution with concurrent production of LA and biomethane. We compared two fermentation approaches: acid-neutral (Scenario I) and low pH (Scenario II). Traditional esterification with methanol, followed by hydrolysis of methyl lactate, was employed for downstream separation to obtain polymer-grade LA. High-pressure steam was generated from solid debris via anaerobic digestion to complement energy demands partly. Energy consumption was further attenuated by process integration using pinch technology, with around 15% and 11% utility cost savings for Scenario I and II, respectively. These processes were capital-intensive, with 42–46% of LA production cost stemming from direct and indirect costs. Utilities were the major cost-contributing factor (19–21%) due to energy-intensive water evaporation from dilute fermentation broth. Due to additional processing steps, capital investment and operating costs were slightly higher in Scenario I than in Scenario II. LA manufacturing cost was thus more for Scenario I (2.07perkg)thanScenarioII(2.07 per kg) than Scenario II (1.82 per kg). The minimum LA selling price for Scenario I and II were 3.52and3.52 and 3.22 per kg, respectively, with five-year payback periods and 8.5% internal rates of return. LA was slightly more expensive for decentralized BW processing than the market price

    F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear beta-catenin function

    Get PDF
    Aberrant activation of beta-catenin has been implicated in a variety of human diseases, including cancer. In spite of significant progress, the regulation of active Wnt/beta-catenin-signaling pathways is still poorly understood. In this study, we show that F-box protein 16 (FBXO16) is a putative tumor suppressor. It is a component of the SCF (SKP1-Cullin1-F-box protein) complex, which targets the nuclear beta-catenin protein to facilitate proteasomal degradation through the 26S proteasome. FBXO16 interacts physically with the C-terminal domain of beta-catenin and promotes its lysine 48-linked polyubiquitination. In addition, it inhibits epithelial-to-mesenchymal transition (EMT) by attenuating the level of beta-catenin. Therefore, depletion of FBXO16 leads to increased levels of beta-catenin, which then promotes cell invasion, tumor growth, and EMT of cancer cells. Furthermore, FBXO16 and beta-catenin share an inverse correlation of cellular expression in clinical breast cancer patient samples. In summary, we propose that FBXO16 functions as a putative tumor suppressor by forming an SCF(FBXO16) complex that targets nuclear beta-catenin in a unique manner for ubiquitination and subsequent proteasomal degradation to prevent malignancy. This work suggests a novel therapeutic strategy against human cancers related to aberrant beta-catenin activation

    Techno-economic viability of bio-based methyl ethyl ketone production from sugarcane using integrated fermentative and chemo-catalytic approach: process integration using pinch technology

    Get PDF
    Butanediols are versatile platform chemicals that can be transformed into a spectrum of valuable products. This study examines the techno-commercial feasibility of an integrated biorefinery for fermentative production of 2,3-butanediol (BDO) from sucrose of sugarcane (SC), followed by chemo-catalytic upgrading of BDO to a carbon-conservative derivative, methyl ethyl ketone (MEK), with established commercial demand. The techno-economics of three process configurations are compared for downstream MEK separation from water and co-product, isobutyraldehyde (IBA): (I) heterogeneous azeotropic distillation of MEK-water and extractive separation of (II) MEK and (III) MEK-IBA from water using p-xylene as a solvent. The thermal efficiency of these manufacturing processes is further improved using pinch technology. The implementation of pinch technology reduces 8% of BDO and 9–10% of MEK production costs. Despite these improvements, raw material and utility costs remain substantial. The capital expenditure is notably higher for MEK production from SC than BDO alone due to additional processing steps. The extraction based MEK separation is the simplest process configuration despite marginally higher capital requirements and utility consumption with slightly higher production costs than MEK-water azeotropic distillation. Economic analysis suggests that bio-based BDO is cost-competitive with its petrochemical counterpart, with a minimum gross unitary selling price of US$ 1.54, assuming a 15% internal rate of return over five-year payback periods. However, renewable MEK is approximately 16–24% costlier than the petrochemical route. Future strategies must focus on reducing feedstock costs, improving BDO fermentation efficacy, and developing a low-cost downstream separation process to make renewable MEK commercially viable

    Life cycle assessment of microbial 2,3-butanediol production from brewer’s spent grain modeled on pinch technology

    Get PDF
    Microbial production of 2,3-butanediol (BDO) has received considerable attention as a promising alternate to fossil-derived BDO. In our previous work, BDO concentration >100 g/L was accumulated using brewer’s spent grain (BSG) via microbial routes which was followed by techno-economic analysis of the bioprocess. In the present work, a life cycle assessment (LCA) was conducted for BDO production from the fermentation of BSG to identify the associated environmental impacts. The LCA was based on an industrial-scale biorefinery processing of 100 metric tons BSG per day modeled using ASPEN plus integrated with pinch technology, a tool for achieving maximum thermal efficiency and heat recovery from the process. For the cradle-to-gate LCA, the functional unit of 1 kg of BDO production was selected. One-hundred-year global warming potential of 7.25 kg CO2/kg BDO was estimated while including biogenic carbon emission. The pretreatment stage followed by the cultivation and fermentation contributed to the maximum adverse impacts. Sensitivity analysis revealed that a reduction in electricity consumption and transportation and an increase in BDO yield could reduce the adverse impacts associated with microbial BDO production

    Integrated biorefinery for bioethanol and succinic acid co-production from bread waste: techno-economic feasibility and life cycle assessment

    Get PDF
    In this study, an advanced decarbonization approach is presented for an integrated biorefinery that co-produces bioethanol and succinic acid (SA) from bread waste (BW). The economic viability and the environmental performance of the proposed BW processing biorefinery is evaluated. Four distinctive scenarios were designed and analysed, focusing on a plant capacity that processes 100 metric tons (MT) of BW daily. These scenarios encompass: (1) the fermentation of BW into bioethanol, paired with heat and electricity co-generation from stillage, (2) an energy-optimized integration of Scenario 1 using pinch technology, (3) the co-production of bioethanol and SA by exclusively utilizing fermentative CO2, and (4) an advanced version of Scenario 3 that incorporates carbon capture (CC) from flue gas, amplifying SA production. Scenarios 3 and 4 were found to be economically more attractive with better environmental performance due to the co-production of SA. Particularly, Scenario 4 emerged as superior, showcasing a payback period of 2.2 years, a robust internal rate of return (33% after tax), a return on investment of 32%, and a remarkable net present value of 163 M$. Sensitivity analysis underscored the decisive influence of fixed capital investment and product pricing on economic outcomes. In terms of environmental impact, Scenario 4 outperformed other scenarios across all impact categories, where global warming potential, abiotic depletion (fossil fuels), and human toxicity potential were the most influential impact categories (−0.344 kg CO2-eq, −16.2 MJ, and −0.3 kg 1,4-dichlorobenzene (DB)-eq, respectively). Evidently, the integration of CC unit to flue gas in Scenario 4 substantially enhances both economic returns and environmental sustainability of the biorefinery.NER

    Bread waste valorization: a review of sustainability aspects and challenges

    Get PDF
    Bread waste (BW) poses a significant environmental and economic challenge in the United Kingdom (UK), where an estimated 20 million slices of bread are wasted daily. BW contains polysaccharides with great potential for its valorization into building block chemicals. While BW valorization holds tremendous promise, it is an emerging field with low technology readiness levels (TRLs), necessitating careful consideration of sustainability and commercial-scale utilization. This review offers a comprehensive assessment of the sustainability aspects of BW valorization, encompassing economic, environmental, and social factors. The primary objective of this review article is to enhance our understanding of the potential benefits and challenges associated with this approach. Incorporating circular bioeconomy principles into BW valorization is crucial for addressing global issues stemming from food waste and environmental degradation. The review investigates the role of BW-based biorefineries in promoting the circular bioeconomy concept. This study concludes by discussing the challenges and opportunities of BW valorization and waste reduction, along with proposing potential strategies to tackle these challenges

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore