574 research outputs found

    Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy

    Get PDF
    Background\ud \ud Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud Results\ud \ud By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud Conclusions\ud \ud We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud Reviewers\ud \ud This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel

    The Lockman Hole Project: new constraints on the sub-mJy source counts from a wide-area 1.4 GHz mosaic

    Get PDF
    This paper is part of a series discussing the results obtained in the framework of a wide international collaboration - the Lockman Hole Project - aimed at improving the extensive multiband coverage available in the Lockman Hole region, through novel deep, wide-area, multifrequency (60, 150, 350 MHz, and 1.4 GHz) radio surveys. This multifrequency, multi-band information will be exploited to get a comprehensive view of star formation and active galactic nucleus activities in the high-redshift Universe from a radio perspective. In this paper, we present novel 1.4 GHz mosaic observations obtained with the Westerbork Synthesis Radio Telescope. With an area coverage of 6.6 deg2, this is the largest survey reaching an rms noise of 11 uJy/beam. In this paper, we present the source catalogue (~6000 sources with flux densities S>55 uJy (5sigma), and we discuss the 1.4 GHz source counts derived from it. Our source counts provide very robust statistics in the flux range 0.1<S<1 mJy, and are in excellent agreement with other robust determinations obtained at lower and higher flux densities. A clear excess is found with respect to the counts predicted by the semi-empirical radio sky simulations developed in the framework of the Square Kilometre Array Simulated Skies project. A preliminary analysis of the identified (and classified) sources suggests this excess is to be ascribed to star-forming galaxies, which seem to show a steeper evolution than predicted.Comment: accepted for publication on MNRAS. New version that corrects latex errors and contain the correct version of figure 1

    A study of the temperature dependence of bienzyme systems and enzymatic chains

    Get PDF
    It is known that most enzyme-facilitated reactions are highly temperature dependent processes. In general, the temperature coefficient, Q10, of a simple reaction reaches 2.0-3.0. Nevertheless, some enzyme-controlled processes have much lower Q10 (about 1.0), which implies that the process is almost temperature independent, even if individual reactions involved in the process are themselves highly temperature dependent. In this work, we investigate a possible mechanism for this apparent temperature compensation: simple mathematical models are used to study how varying types of enzyme reactions are affected by temperature. We show that some bienzyme-controlled processes may be almost temperature independent if the modules involved in the reaction have similar temperature dependencies, even if individually, these modules are strongly temperature dependent. Further, we show that in non-reversible enzyme chains the stationary concentrations of metabolites are dependent only on the relationship between the temperature dependencies of the first and last modules, whilst in reversible reactions, there is a dependence on every module. Our findings suggest a mechanism by which the metabolic processes taking place within living organisms may be regulated, despite strong variation in temperature

    Adaptive Reconfiguration of Natural Killer Cells in HIV-1 Infection

    Get PDF
    Human cytomegalovirus (HCMV) co-infection is highly prevalent within HIV-1 cohorts and is an important cofactor in driving ongoing immune activation, even during effective antiretroviral treatment. HCMV infection has recently been associated with expansion of adaptive-like natural killer (NK) cells, which harbor epigenetic alterations that impact on their cellular function and phenotype. The influence of HCMV co-infection on the considerable heterogeneity among NK cells and their functional responses to different stimuli was assessed in a cohort of HIV-1-infected individuals sampled during different stages of infection, compared with healthy subjects stratified according to HCMV serostatus. Our data demonstrate a reshaping of the NK cell pool in HIV-1 infection of HCMV-seropositive individuals, with an accentuated peripheral transition of CD56dim NK cells toward a mature CD57+ CD85j+ NKG2C+ NKG2A− phenotype. Lack of PLZF further distinguishes adaptive NK cells from other NK cells expressing CD57 or NKG2C. PLZF− NK cells from HIV-infected individuals had high expression of CD2, were Siglec-7 negative and exhibited downregulation of key signaling molecules, SYK and FcεRI-γ, overwhelmingly displaying features of adaptive NK cells that correlated with HCMV serum Ab levels. Notably this adaptive-like signature was detected during early HIV-1 infection and persisted during treatment. Adaptive-like NK cell subsets in HIV-1-infected individuals displayed enhanced IFN-γ production following Fc receptor triggering compared with their conventional NK cell counterparts, and their ability to produce TNF-α and degranulate was preserved. Together, these data suggest that HMCV infection/reactivation, a hallmark of HIV-1 infection, plays a role in driving a relative expansion of NK cells with adaptive features during HIV-1 infection. The identification of selective NK subsets with retained effector activity in HIV-1-infected subjects raises the possibility of developing therapeutic strategies that exploit specific NK subpopulations to achieve better HIV-1 control

    Simulation Approach for Timing Analysis of Genetic Logic Circuits

    Get PDF
    Constructing genetic logic circuits is an application of synthetic biology in which parts of the DNA of a living cell are engineered to perform a dedicated Boolean function triggered by an appropriate concentration of certain proteins or by different genetic components. These logic circuits work in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits, a capability that we believe will be important for design automation in synthetic biology

    Inherent noise can facilitate coherence in collective swarm motion

    Get PDF
    Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker–Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker–Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker–Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker–Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data

    Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    Get PDF
    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth

    Interferon Alpha Induces Sustained Changes in NK Cell Responsiveness to Hepatitis B Viral Load Suppression In Vivo

    Get PDF
    This work was supported by funding from The NIHR Academic Clinical Fellowship scheme and a Wellcome Trust Clinical Research Training fellowship (107389/Z/15/Z) awarded to USG; a Wellcome Trust Senior Investigator award (101848/Z/ 13/Z) to MKM and a Barts and The London Charity award (No. 723/1795) to PTFK

    Rubbing induced reversible fluorescence switching in thiophene-based organic semiconductor films by mechanical amorphisation

    Get PDF
    Here, we applied rubbing on thiophene-basedorganic semiconductor thin films to induce a reversible mechanical amorphisation. Amorphisation is associated with fluorescence switching, which is regulated by the polymorphic nature of the film. Thermal annealing of rubbed films produces an opposite effect with respect to rubbing, inducing film crystallization. Notably, thermal crystallisation starts at a low temperature but generates the polymorph stable at a high temperature in the bulk. The mechanism of mechanical transformation is explained considering the mechanical properties of the material and demonstrated through combined X-ray diffraction, atomic force microscopy and photoluminescence at confocal microscopy. This journal i
    corecore