

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 09, 2018

Simulation Approach for Timing Analysis of Genetic Logic Circuits

Baig, Hasan; Madsen, Jan

Published in:
A C S Synthetic Biology

Link to article, DOI:
10.1021/acssynbio.6b00296

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Baig, H., & Madsen, J. (2017). Simulation Approach for Timing Analysis of Genetic Logic Circuits. A C S
Synthetic Biology, 6(7), 1169-1179. DOI: 10.1021/acssynbio.6b00296

http://dx.doi.org/10.1021/acssynbio.6b00296
http://orbit.dtu.dk/en/publications/simulation-approach-for-timing-analysis-of-genetic-logic-circuits(ba6a8db0-c66b-41fa-9963-1468adb16a21).html

Simulation Approach for Timing Analysis of Genetic Logic Circuits
Hasan Baig* and Jan Madsen*

Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

*S Supporting Information

ABSTRACT: Constructing genetic logic circuits is an
application of synthetic biology in which parts of the DNA
of a living cell are engineered to perform a dedicated Boolean
function triggered by an appropriate concentration of certain
proteins or by different genetic components. These logic
circuits work in a manner similar to electronic logic circuits,
but they are much more stochastic and hence much harder to
characterize. In this article, we introduce an approach to
analyze the threshold value and timing of genetic logic circuits.
We show how this approach can be used to analyze the timing
behavior of single and cascaded genetic logic circuits. We
further analyze the timing sensitivity of circuits by varying the
degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze
the timing constraints of cascaded genetic logic circuits, a capability that we believe will be important for design automation in
synthetic biology.

KEYWORDS: timing analysis, stochastic simulation, SBML, genetic logic circuits, synthetic biology, virtual instrumentation,
threshold value analysis

One of the ultimate goals of synthetic biology1 is the
engineering of dedicated cell behavior by introducing

new sequences of DNA (encoding genetic circuits) into a cell’s
DNA. A genetic circuit represents a gene regulatory network
that is triggered by a combination of external input signals, such
as chemicals, proteins, light, and temperature, to emit signals
for controlling the expression of other genes or metabolic
pathways accordingly.
The ability to engineer living cells has created completely

new ways of manufacturing food, drugs, biofuel, and
materials.4−9 It is possible to produce not only new materials,
such as reprogramming bacteria to produce spider silk,2 but
also active components for therapeutics, such as the “living
pill”,3 a bacteria reprogrammed to automatically sense the
presence of two disease-causing molecules in the body and
respond by triggering the production of two other molecules
that treat the disease.
The later is an example of how the design and

implementation of logic functions, in this case a simple AND
gate, can be used to design synthetic genetic circuits for many
different applications including cancer destruction, biosensors,
cell therapy, regenerative medicine,4−9 and so forth. The
Boolean behavior of genetic logic circuits is similar to that of
electronic logic circuits. In digital electronics, circuits are made
up of digital logic gates, which themselves are composed of
transistors.10,11 However, genetic logic circuits are composed of
biological components of DNA,12 including promoters,
ribosome binding sites (RBSs), terminators, and gene coding
regions. The genetic circuits are usually meant to produce
output protein based on the presence of input proteins. For

example, Figure 1 shows the diagram of a genetic AND gate
circuit.13

Genetic circuits are assembled either from a standard library
of well-defined genetic gates19 or from the available library of
basic biological components, for instance, BioBricks.14 The
behavior of these circuits is usually first validated through in
silico (in computer) analysis either by solving reaction kinetics
using ordinary differential equations or by performing
stochastic simulations, with the aim of reducing the number
of required in vitro (in laboratory test tubes) experiments.
Analogous to microelectronics, where timing analysis is a

crucial requirement for ensuring the correct operation of a logic
circuit, the timing analysis of genetic logic circuits may become
an essential design characteristic as well. The transistors, used
in the composition of digital logic gates, have well-defined
threshold voltage values,10 which categorize logic levels 0 and 1.
Hence, the timing characteristics, like propagation delay, hold
time, setup time, etc., are all well characterized.
However, this is not the case in genetic logic gates, where

each gate is composed of different proteins and promoters,
resulting in different threshold concentration values. Further-
more, digital logic gates have the same physical quantity, i.e.,
voltage, as their input and output. On the contrary, genetic
logic gates use different biological components including
proteins, RNA, inducers, etc., to control the regulation of the

Special Issue: IWBDA 2016

Received: October 14, 2016
Published: January 19, 2017

Research Article

pubs.acs.org/synthbio

© XXXX American Chemical Society A DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

pubs.acs.org/synthbio
http://dx.doi.org/10.1021/acssynbio.6b00296

corresponding output biological components. Additionally,
signals in electronic circuits propagate in separate wires that
do not directly interfere with each other. However, in genetic
circuits, signals are molecules, drifting in the same volume of
the cell, and hence easily merge with the concentration of other
compounds, resulting in crosstalk with the neighboring circuit
components. These facts make the timing analysis of genetic
circuits very challenging.
Challenges due to crosstalk have also been encountered in

microelectronics; however, most of these have been solved
through enhanced fabrication processes or the development of
advanced electronic design automation (EDA) tools. Similarly,
advances in genetic design automation (GDA) tools may help
to address these challenges, resulting in a reduction of the
design complexity of genetic logic circuits.
In this article, we introduce a method to perform timing and

threshold value analyses on genetic logic circuits and
implement the algorithm on D-VASim.15 We demonstrate
that it is possible to perform timing analysis of a genetic circuit
and that it can be used to achieve the desired circuit behavior.
We perform timing analysis on some of the genetic circuit
models proposed in refs 13 and 19 and investigate the
sensitivity of circuit timings in relation to varying different
circuit parameters. In particular, we investigate the timing
sensitivity due to the degradation rate and the concentration of
input proteins.

■ RESULTS AND DISCUSSION
D-VASim is an interactive virtual laboratory environment for
the simulation and analysis of genetic logic circuits.15 It takes a
genetic logic circuit model, developed in the Systems Biology
Markup Language (SBML),16 and lets the user analyze the
model in an intuitive manner. For each logic circuit model, D-
VASim generates a separate virtual laboratory environment for
deterministic (by solving ODEs) and stochastic (using
Gillespie’s stochastic simulation algorithm20,21) simulations.
This virtual environment serves as a standalone virtual
instrument for the specific logic circuit model, which allows
users to interact with the model, observe its behavior, and make

direct changes in the concentration of input proteins, all during
runtime. This runtime interaction gives the user a feeling of
being in the lab performing live experiments without being
afraid of over reactions occurring or mishandling lab equip-
ment.

Timing Analysis. Threshold value and timing analysis can
be used to verify the Boolean function of a genetic logic circuit
by extracting the observed logic behavior from the simulation’s
results. This functionality is useful in two ways: first, it allows
the user to verify more complex genetic logic circuits, built by
cascading several genetic logic gates; second, it helps the user to
extract the Boolean logic of the biomodel even when the user
does not have any prior knowledge about the expected behavior
of the model. For Boolean logic analysis, the genetic logic
circuit model can be considered a black box. Applying all
possible input combinations and observing the output can
result in the combinatorial behavior of this black box. For
instance, if a circuit contains two inputs, then there are four
possible input combinations: 00, 01, 10, and 11. The key
challenge in determining the correct Boolean logic function
from the analog simulation data is to categorize the input
concentration levels into logic 0 and 1. As mentioned earlier,
this is similar to digital electronic circuits in which a certain
threshold value of input voltage differentiates logic levels 0 and
1.10 Digital electronic circuits are also analog in nature, but a
logical abstraction has been employed to reduce the complexity
of circuits. Similar abstraction has to be employed to categorize
the genetic concentration levels into logic 0 and 1. To
categorize these concentration levels into logic 0 and 1, the
threshold value for the concentration of input proteins, which
significantly affects the concentration of the output protein of a
genetic logic circuit, must be identified.
As different proteins in a genetic circuit may have different

threshold concentration values, the proposed approach
calculates a single threshold value of the input proteins that
trigger the output, instead of estimating the threshold values of
each input protein separately. For instance, in the genetic AND
gate (Figure 1), D-VASim estimates the threshold value of LacI
and TetR, which together trigger the production of GFP (green
fluorescent protein), rather than evaluating the separate
threshold values for each of them. It may be possible that the
threshold value of LacI is, for example, 13 molecules, and that
of TetR is, say, 9 molecules. In this case, D-VASim tells that 13
molecules is the threshold value of an entire circuit, which
triggers the circuit output when the concentrations of input
proteins reach this level. Consider another example of an OR
gate in which input-1 triggers the output if the molecular count
is greater than 5 and input-2 triggers the output if the molecular
count is greater than 10. Setting the upper input threshold to
10 would give the correct answer, i.e., the gate remains off, if
the input molecular counts are (4,7). Now, if the input
molecular counts are (7,4), then input-1 may trigger the output
but it may not be considered logic 1 until the output
concentration increases above 10 molecules. It is observed,
through simulations, that the triggered output for such
scenarios is highly unstable (frequently oscillating between
logic 0 and 1), and this region should be considered a transition
region. Therefore, instead of estimating the threshold values of
each input protein separately, our algorithm estimates the
global upper and lower threshold values for all inputs.
Furthermore, D-VASim considers the entire circuit as a black
box and obtains the input threshold value that is required to
trigger the final output. Therefore, the threshold value and the

Figure 1. Genetic AND gate circuit.13 (a) P1 and P2 are promoters,
which are the regions of DNA that initiate the process of transcription
(or production) of a particular gene. In this example, when two
proteins, LacI and TetR, are present in significant amounts within the
cell, they inhibit promoters P1 and P2 to produce the output gene CI.
When the concentration of CI falls below a certain level, promoter P3
is activated and produces an output protein, i.e., green fluorescent
protein (GFP). (b) Schematic diagram equivalent to a two-input
electronic AND gate. (c) Truth table.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acssynbio.6b00296

number of intermediate circuit components do not matter; D-
VASim ensures that the estimated input threshold value is
sufficient to trigger the intermediate circuit components all the
way from input to final output. However, the separate threshold
values of intermediate circuit components can also be analyzed
in D-VASim.
In order to understand the algorithm for estimating the

threshold value, consider the simulation traces of the genetic
AND gate using iBioSim18 shown in Figure 2. In Figure 2b, it is

seen that keeping the input concentrations to 10 molecules
causes the average output concentration to stay below the level
of the input concentration. Upon increasing the input
concentrations further to 13 molecules, the average output
concentration goes above the level of the input concentrations,
as depicted in Figure 2c. We also performed the same analyses
with different concentrations on different logic circuits. These
analyses show a relation between the input and output proteins
of a genetic circuit. On the basis of these analyses, we define an
input−output relation of a genetic circuit in terms of its
threshold value as follows:
Def inition I. Threshold value: The minimum concentration of

input protein(s) that causes the average concentration of output
protein to cross the concentration of input protein(s).
In the example shown in Figure 2, the upper threshold value

of input is 13 molecules; that is, the input concentration above

13 molecules is considered logic 1, and that below 10 molecules
is considered logic 0. There is a transition region between these
two levels (not shown in Figure 2), where the average output
concentration is not clearly distinguishable with the input
concentration level. Hence, when the concentration levels of
both inputs are 10 or fewer molecules, i.e., logic 0, the average
output concentration remains low (logic 0), else it goes high
(logic 1) when the concentration of both inputs reaches 13 or
more molecules (logic 1). This relation of input and output
concentration is justified because, according to this definition,
one do not need to care about how many circuit levels are
cascaded between input and output. It simply identifies the
input concentration required to trigger the final output. The
same definition is applicable to determine the threshold values
of intermediate circuit components separately.
Another important factor for automatically obtaining the

correct Boolean expression from the simulation data is the
propagation delay. Figure 3 shows a zoomed-in version of

Figure 2c, which shows that the effect of changes in the input
concentration is reflected in the output concentration after a
time delay of approximately 700 s. That is, the output protein
takes about 700 time units to cross the level of the input
concentration when the inputs are triggered to their threshold
value. Thus, we define the propagation delay of a genetic circuit
as follows:
Def inition II. Propagation delay: The time f rom when the input

concentration reaches its threshold value until the corresponding
output concentration crosses the same threshold value.
Figure 3 shows that the output goes “high” after

approximately 700 s from the time when both inputs have
reached the significant concentration level (13 molecules).
During these 700 s, the output remains low and hence does not
produce the expected logic output. It also means that, during
simulation (or even during experimentation in the laboratory),
the user should not change the inputs before this time delay has
elapsed. In order to identify the threshold levels of a circuit in
the laboratory, the biologist could perform this analysis by
adding the input concentration periodically to see if it
significantly affects the concentration of the output. To identify
the input concentration, which significantly affects the output,
different input combinations must be tried with different

Figure 2. Preliminary analysis of a threshold value for the genetic
AND gate using iBioSim.18 It shows the results from running the
stochastic simulation of the genetic AND gate 1 time (a) and 50 times
(b) and (c). The unit of species’ concentration used in the circuit
models of ref 13 is the “number of molecules”. Panel (a) shows that
both of the inputs are triggered to 10 molecules, TetR after 1000 time
units and LacI after 2000 time units, and that the output is highly
stochastic, which makes it difficult to determine the input threshold
value. A smooth output curve is obtained by plotting the average of 50
runs, as shown in (b) and (c). Panel (b) shows the lower threshold
value of inputs LacI = TetR = 10, and panel (c) shows the upper
threshold value of inputs LacI = TetR = 13.

Figure 3. Zoomed-in image of Figure 2c indicating the preliminary
propagation delay analysis using iBioSim.18 In this figure, the
propagation delay is approximately 700 s.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acssynbio.6b00296

concentration levels, which is a very tedious and time-
consuming task to do in the laboratory. Furthermore, as
mentioned above, it must be ensured that each input
combination is applied after a certain time delay. In this
work, we have developed an algorithm to automate this process
and tested it on D-VASim.15 Since the behavior of a genetic
circuit is well described by stochastic simulations, we therefore
apply the proposed method to the stochastic behavior of a
genetic circuit obtained from Gillespie’s stochastic simulation
algorithm.20,21

The algorithm for the threshold value and propagation delay
analysis is shown as pseudocode in Chart 1. The algorithm is

initialized by some user-defined parameters as indicated in
Chart 1. Cin specifies the value of the input protein(s)
concentration, from which the tool should start its threshold
analysis. Inc is the value with which the input concentration is
increased for each iteration, in order to observe if the resulting
concentration level of the input affects the concentration of the
output. The CinE value specifies the input concentration at
which the algorithm should stop the analysis of the threshold
value. The algorithm also requires an initial assumption of the

input−output propagation delay value, TD. It was already
mentioned that the input−output propagation delay value is
critical for extracting the correct logic behavior of a circuit
model. Thus, it is necessary to wait until this time value has
elapsed before applying the next combination of inputs. Since
the time delay value is unknown for the automatic analysis, the
tool begins the analysis with an assumed value and later
estimates the approximate one. Assuming a higher value
increases the estimation time but gives a better estimation of
the threshold value.
For a simulation, if every node of a genetic circuit model is

not initialized to a stable value, then some of the genetic
circuits’ outputs are initially unstable and exhibit unexpected
behavior for a certain amount of time. For example, in the
simulation traces (see Figure 2) of the genetic AND circuit
shown in Figure 1, the initial values of LacI and TetR are zero,
but when the simulation starts, the output, CI, of the first
circuit’s component (i.e., NAND gate, see Figure 1) is also zero,
which enables the inverter and produces GFP until the input
value 0 propagates through the NAND gate. In order to
perform correct timing analysis, it is therefore required to
initialize all of the circuit nodes to a stable value. If the values
are not initialized, it is important that the algorithm should wait
for the circuit’s output to become stable first. The parameter ST
(settling time) helps the user to specify a rough value for the
initial time during which the circuit’s output is expected to
become stable. When the algorithm performs automatic
analysis, it waits for the value defined for ST to allow the
circuit’s output to become stable first and then triggers the
input combinations to determine the appropriate threshold and
propagation delay values of a circuit. For small genetic circuits,
containing a single gate only (for example, NOT, NAND, and
NOR) and having a low degradation rate (kd = ∼0.0015), it is
observed through simulations that these circuits usually take at
least 1000 time units to become stable. This implies that, for
these circuits and kd, the ST parameter should not be less than
1000 time units. If a value less than this is chosen, then the
algorithm will not be able to produce the correct estimation.
The algorithm further verifies the obtained threshold value

by iterating the model for a predefined number of iterations, i.
During this iterative verification process, the algorithm obtains
the average propagation delay by running the model for the
length of time defined by VT for each iteration i. It also
identifies the extent to which the average output for the
estimated threshold value is consistent. In order to understand
this procedure, lets assume the parameter values shown in
Table 1. The unit for concentration here is the “number of
molecules”.

Chart 1. Threshold Value Analysis Algorithm

Table 1. Sample Values of Parameters Required for
Threshold Value and Timing Analysis

parameter name value

Cin 0
Inc 2.75
CinE 15
TD 800
ST 200
i 10
VT 1000
OCDUTh 90
OCDLTh 30

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/acssynbio.6b00296

Now consider the sample time scale plots shown in Figure 4.
To find the threshold value of the input concentration that

significantly affects the output concentration, a specific input
combination should be applied. This means that all possible
combinations should be checked one by one until the specific
combination of inputs that triggers the output concentration is
found. For logic circuits like AND, NAND, OR, NOR, and
NOT, the output transition can be observed by triggering both
of the inputs to the same concentration level at the same time.
The algorithm, therefore, triggers both input combinations
from 00 to 11 first, instead of following the traditional pattern
of 00 → 01 → 10 → 11. Because of this, the algorithm
estimates the threshold value of some circuits, for example,
AND gate, relatively faster.
Figure 4a shows the case of input logic combination “11”, i.e.,

when both inputs are triggered high. According to the settings
shown in Table 1, the algorithm runs the model first by keeping
the input concentration at zero until the assumed time delay of
800 time units has elapsed. In order to determine if the output
concentration crosses the level of the input concentration as
defined in Def inition I, or in other words, to determine whether
the output concentration goes above the input concentration
level or falls below it, we need to know the initial concentration
of output protein at input logic level combination “00”.
Therefore, during the first 800 time units (TD), the average of
the initial output concentration is obtained by keeping the

concentration of both inputs at zero, i.e., logic 0. On the basis
of this average initial output concentration, the estimation of
the output concentration crossing the input concentration level
is performed.
Once the assumed time delay has elapsed, the input

concentration level is incremented to the next level, indicated
by line 32 in Chart 1. The example case shown in Figure 4a
portrays the scenario of an AND gate where the initial average
output of a circuit (with both input concentrations at zero) is
zero. The algorithm also works for the case where the average
initial output concentration is high, for instance, a NOT gate,
by iteratively increasing the input concentration and checking if
the output concentration falls below the concentration level of
the input. Note that this still satisfies Def inition I.
Point t1 shown in Figure 4a implies that the algorithm halts

the current loop execution when the value of the output protein
crosses the input concentration level. This anticipates the
possible threshold value (5.5 molecules in this example) as it
makes the output concentration cross the input concentration
level. To verify this threshold value, the algorithm executes a
separate loop to run the simulation of the circuit model for the
defined number of iterations, 10 times in this example, as
shown in Figure 4b. This process is executed in lines 13−21 in
Chart 1.
In order to measure the correct propagation delay, it is

necessary to trigger the input protein, particularly from zero to
the expected threshold level, only when the model’s initial
output is settled. As mentioned before, the outputs of some
circuits are unexpectedly high, which gradually settles to zero.
This scenario is depicted in Figure 4b. Therefore, the initial
concentrations of input proteins must not be triggered to their
expected threshold level until the output becomes stable. As
mentioned above, the settling time, ST, lets the user provide a
period of time by which the initial output is expected to
become stable. This is the time at (or after) which the
algorithm triggers the inputs to their expected threshold levels
to determine the time it takes to trigger the output
concentration. If a low value is assumed for ST, then the
algorithm may produce an incorrect propagation delay. For
example, in Figure 4b, if a value of 50 was chosen as the settling
time, then the inputs would be triggered at 50 time units. At
this instant, when the inputs are triggered to their expected
threshold level, the concentration of the output is already above
the threshold level and thus the algorithm would estimate the
propagation delay to zero. Therefore, depending on the
complexity of a circuit and the degradation rate (kd), this
value should be chosen carefully.
The simulation output data from all 10 iterations were

averaged to obtain the average estimated propagation delay and
the inconsistency present in the output plot for the estimated
threshold values. The inconsistency, illustrated in Figure 4b, is
calculated by determining the size of the average output data,
which is less than the the input concentration level immediately
after the output crosses the input level for the first time, i.e., the
inconsistency is estimated between points t2 and t3 as shown in
Figure 4b. In other words, for examining the upper threshold
level, the idea is to determine how consistently the average
output data remains above the input concentration level
between points t2 and t3. The algorithm accepts the estimated
threshold value based on the user-defined parameter, %
acceptance of consistency, shown as OCDUTh (for upper
threshold level) and OCDLTh (for lower threshold level) in
Chart 1.

Figure 4. Sample time scale plots of the genetic AND gate. This figure
shows how the automatic threshold value and timing analysis takes
place by the proposed algorithm. (a) First loop to detect the threshold
value. (b) Separate loop to verify the estimated threshold value
repeatedly for a predefined number of iterations, i (10 in this case). If
more than 90% of the average output data, between instants t2 and t3,
remains above the input level, then the input concentration level is
considered to be the upper threshold level. Similarly, if less than 30%
of the average output data remains above the input level between
instants t2 and t3, then the input concentration level is considered to
be the lower threshold level. The propagation delay is measured from
the instant when the input is triggered from its lower threshold level to
its expected upper threshold level to the instant when the average
output crosses the same input level.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/acssynbio.6b00296

The results are accepted if the estimated consistency is
greater (for the upper threshold) and less (for the lower
threshold) than the user-defined values, OCDUTh and OCDLTh,
respectively.
This is shown in the lines 26−31 in Chart 1. The results are

otherwise discarded, and the algorithm resumes the analysis
from point t1, shown in Figure 4a. The percentage output
consistency is calculated according to eq 1.

=
−

×−

−

O D
O

% output consistency 100t t

t t

2 3

2 3 (1)

where Ot2−t3 is the size of the average output data between
instants t2 and t3 (Figure 4b) and D is the deviation, which
defines the number of times the output data is found to deviate
from the expected (greater or less than) threshold value.
The quantity D in eq 1 is considered to be different in two

different cases; i.e., when the initial input concentration is
found low, then D in eq 1 indicates the number of times the
output data is found to be “less” than the threshold value, as in
the case shown in Figure 4. Else, if the initial input
concentration is high, then D signifies the number of times
the output data is found to be “greater” than the threshold
value. For the sample parameters (Table 1) used for the sample
plots shown in Figure 4, the algorithm estimates the input
concentration as the upper threshold level if the output
consistency is 90% or above. Likewise, the input level is
assessed as the lower threshold level if the estimated output
consistency is less than 30%.
Simulation Results. In this research, timing analysis is

performed on the nine genetic logic circuit models (Figure 5)
proposed in ref 13. The genetic implementation and the
description of these circuits can be found in ref 13. These
circuits are considered fairly complex in the context of genetic
circuits because each gate is composed of several genetic
components. Their kinetic interactions are described by a
number of mathematical equations in the SBML model. We ran
the SBML models of these genetic logic circuits on D-VASim
and performed their threshold value and propagation delay
analysis.
In microelectronic devices, the behavior of a circuit depends

on many different parameters. For example, in MOS transistors,
the drain current depends on the width and length of the gate,
oxide capacitance, gate-to-source voltage, and so forth.
Similarly, the behavior of a genetic circuit also depends on
different parameters, including degradation rate, forward
repression binding rate, forward activation binding rate, and
so on. These parameters of a genetic circuit model are
described in the SBML file. We carried out simulations on these
nine genetic circuit models by observing the effects of varying
the degradation rate (kd) on the propagation delay and the
threshold value of a circuit.
The degradation rate is the rate at which a chemical

compound (e.g., a protein) is decomposed into intermediate
products, i.e., a produced protein will be effective only for a
certain period of time determined by the degradation rate. A
zero degradation rate means that the protein does not degrade
and hence will be effective forever. This is an often-used
assumption, which clearly is not realistic, which is why
understanding the impact of the degradation rate on the
timing analysis is an important investigation.
The threshold value and propagation delay of each circuit is

obtained for five different values of kd (0.0015, 0.0055, 0.0095,

0.0135, 0.0215). These set of values are chosen based on a
degradation rate value used in ref 13. It has been experimentally
observed that the variation in degradation rate (kd) greatly
effects the settling time, ST, of an output. Hence, for each
circuit, we chose different parameter values (shown in Table 1),
except the number of iterations, i, and % acceptance of
consistency for the upper and lower threshold values (OCDUth
and OCDLth), which were set to 5, 70, and 30, respectively, for

Figure 5. Set of genetic logic circuit models by Myers13 that is used for
the experimentation in this work. More complex circuits, (f)−(i), are
further categorized into three intermediate levels: P1−P2, P2−P3, and
P3−P4. The timing analyses are performed on these three levels
separately, which are mentioned in Table 2. The SR latch shown in
Ckt 7 is asynchronous and does not require a clock input.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/acssynbio.6b00296

all circuits. We purposely used OCDUth = 70% to demonstrate
that it is affected by threshold values.
Figure 6 shows how D-VASim reports the outcomes of a

threshold value and propagation delay analysis once the

algorithm finishes execution. This figure shows the threshold
value and timing analysis results obtained for Ckt 8 (Figure 5h)
when the degradation rate (kd) was set to 0.0135. It indicates
that the estimated upper and lower threshold values are 6.5 and
3.25 molecules with 98.4 and 25.5% consistency, respectively. It
also calculates the approximate input−output propagation delay
value to 620 time units with a standard deviation of ±190.08, in
this case based on five iterations. When the results are obtained,
the user may interact with the model during run time, apply all
possible input combinations in a significant amount, and match
the propagation delay with the one estimated by D-VASim.
Figure 7 shows the simulation traces of the same Ckt 8 with kd
= 0.0135. Due to space limitation, only screen shots of the
analysis results and graphical simulation of Ckt 8 (for kd =
0.0135) are included in this article. However, the complete
experimental data of all circuits is available in the Supporting
Information.
Figure 8 shows the graphical plots of timing analysis for all

circuits. The values of propagation delays are plotted along the
y axis on the left-hand side. The threshold values and
percentage output consistency for each value of kd are plotted
along the y axis on the right-hand side. The x axis contains the
degradation rate values. The general impression of these

Figure 6. Results of threshold value and propagation delay analysis of
Ckt 8 generated by D-VASim for kd = 0.0135. The estimated upper
and lower threshold values are 6.5 and 3.25 molecules with 98.4 and
25.5% consistency, respectively. The approximate input−output
propagation delay value is 620 time units with a standard deviation
of ±190.08.

Figure 7. Analog simulation traces of Ckt 8 with its corresponding digital waveforms for kd = 0.0135. Inputs are A and B; output is C. It can be
observed that the initial concentration of output protein, C (shown as green plots), is high above the threshold value and it takes approximately 400
time units to settle. Furthermore, when the input concentrations are triggered to their lower threshold level, i.e., 3.25 molecules, the output
concentration remains zero. When the input concentration levels are triggered sharply to their estimated threshold value, i.e., 6.5 molecules, the
output of a circuit is high after approximately 800 time units.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00296/suppl_file/sb6b00296_si_001.zip
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00296/suppl_file/sb6b00296_si_001.zip
http://dx.doi.org/10.1021/acssynbio.6b00296

Figure 8. Effects of varying the degradation rate (kd) on the propagation delay of genetic logic circuits.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/acssynbio.6b00296

experiments is that the propagation delay of genetic circuit
decreases with the increase in degradation rate (kd). This was
expected because when the degradation rate is high the protein
degrades faster and thus contributes in a reduction in the
propagation delay. However, the propagation delay does not
seem to have an inverse relation with the degradation rate. The
propagation delay for all circuits dropped considerably with the
first decrement of 40 × 10−4 in kd, and it then decreases slowly
for the next higher values of kd. The standard deviation in the
propagation delay, calculated for the specified number of
iterations (i.e., five in these experiments), is also included for
each circuit in the plots shown in Figure 8. It can be noticed
that the propagation delay of a circuit is more variable for low
degradation rates. The variation in the propagation delay
decreases with the increase in degradation rate; however, a high
degradation rate makes the cascaded circuit’s output unstable.
This is because the genetic components decay quickly when the
degradation rate is high, thus causing the circuit’s logic to
switch faster even when a small input concentration is applied.
This also reduces the transition region between the upper and
lower threshold levels, as shown in the Ckt 8 data in Figure 8.
However, it can also be noticed for Ckt 8 that a transition
region is small for kd = 0.0135 (i.e., 3.25) as compared to kd =
0.0215 (i.e., 6.5). This is because, at kd = 0.0215, Ckt 8 becomes
unstable and produces high output glitches even when the
input concentration levels were kept to zero (see simulation
traces in the Supporting Information). This is the reason that
the lower threshold value of Ckt 8 at kd = 0.0215 is estimated to
be zero.
We further analyzed the intermediate delays of larger genetic

circuit models by splitting them into three points of
measurement, as shown in Figure 5. The propagation delays
for each of these points are mentioned in Table 2. The

propagation delay, indicated by a point of measurement P1−P4
in Table 2, is the entire circuit’s propagation delay. The reader
should not confuse these estimations with those depicted in
Figure 8. The results mentioned in Figure 8 are estimated by D-
VASim using the proposed algorithm, and the results

mentioned in Table 2 are those that are obtained by a user
through a runtime stochastic simulation.
The argument that a circuit’s output becomes unstable for

larger values of kd can also be supported by observing the
intermediate delays of Ckt 6 for kd = 0.0215 in Table 2. As
shown in Figure 5, Ckt 6 is composed of three inverters
connected back-to-back in series. When input protein LacI is
triggered to its threshold value, it suppresses the production of
TetR. When the concentration of TetR drops below its
threshold level, it produces Cro, which in turn suppresses the
production of output protein GFP. However, the intermediate
propagation delays of Ckt 6 for kd = 0.0215 shows that when
the input protein, LacI, is triggered to the estimated threshold
value, the overall output of a circuit, GFP, is produced in 56.5
time units. However, one of the intermediate outputs, Cro, is
produced in a significant amount after ∼70 time units, which is
greater than the propagation delay of the entire circuit. This
invalidates the desired circuit’s behavior and makes the output
unstable, which indicates that the circuit does not behave as
designed.
For Ckt 7, the results of intermediate propagation delays

indicate that an intermediate output Y is always triggered first
before another intermediate output Z. This is obvious because
the number of components in path P1−P2 is fewer than the
components in path P2−P3. However, this timing analysis also
implies that both S and R inputs of the SR-latch remain high for
some interval of time. This, however, seems to have no effect
on the output, C, during runtime simulations. It may be
because this time interval is less than the propagation delay of
SR-latch (i.e., P3−P4). If both S and R remain high for a time
greater than a delay of P3−P4, the output is likely to become
unpredictable. For a large degradation rate (kd = 0.0215), the
intermediate output Z (P2−P3) is produced first, before
intermediate output Y (P1−P2), which invalidates the intended
circuit’s behavior because the number of components in path
P1−P2 are higher than in P2−P3. Similarly, the outputs of
other cascaded circuits are also unstable for higher values of kd.
Aside from these analyses, we observed some other

interesting facts from varying the upper threshold value on
the propagation delay of a circuit. It is observed that smaller
concentrations of the input protein have a weak impact on the
output protein, which is analogous to the behavior of
microelectronic devices. For instance, in MOS transistors,
weak applied VGS (gate-to-source voltage) results in a weak
drain current, ID.

17 This effect can be observed in the graphical
plot of Ckt 4 in Figure 8. In this plot, for kd = 0.0215, the
threshold value of a circuit is reduced to 5 molecules as
compared to its previous data point, which is 10 molecules at kd
= 0.0135. Due to the increment in kd, the propagation delay at
this point is supposed to decrease if the input threshold value
remains the same. However, it slightly increases because the
input threshold is reduced to 5 molecules. We have observed
this effect on other circuits as well during run time simulations.
For instance, we increased the applied input concentration to
60 molecules for Ckt 7 at kd = 0.0015 and observed that the
propagation delay is decreased from 6156 to 5570 time units
(see Supporting Information). This inverse relation between
propagation delay and threshold value holds to a certain extent,
and then a further increment or decrement in the applied input
concentration does not affect the propagation delay.
Moreover, for higher values of kd, we observed that the

output consistency of the upper threshold level is increased by
reducing the threshold value. This is shown in the plots of

Table 2. Intermediate Propagation Delays of Genetic Logic
Circuits

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

I

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00296/suppl_file/sb6b00296_si_001.zip
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00296/suppl_file/sb6b00296_si_001.zip
http://dx.doi.org/10.1021/acssynbio.6b00296

Ckt 9 in Figure 8. The output consistency of the upper
threshold level, at kd = 0.0135 was reduced to 49% (not shown
in Figure 8) when the threshold value was set to 30 molecules.
We then analyzed the output consistency of Ckt 9 at kd =
0.0215 by keeping the threshold value to the same level, i.e., 30
molecules (not shown in Figure 8), and we noticed that the
output consistency decreased to 2%. We then decreased the
threshold value to 6.5 molecules and observed that the output
consistency increased to 75.5%, as shown in Figure 8.
The plots for lower threshold values of each circuit are also

shown in Figure 8. It has been observed that the lower
threshold value of all circuits approaches zero as kd increases.
The values of the upper and lower threshold levels also depend
on the parameter Inc (see Table 1), which specifies the input
concentration to be added to the previous input concentration
level during each iteration, i. For example, in the case of Ckt 2
and Ckt3, the value of Inc was set to 30 at kd = 0.0015. The
algorithm thus triggers the input concentration from 0 to 30
directly during the analysis. Because of this, the average output
was found to be 100% consistent for the upper threshold level,
which results in estimations of the upper and lower threshold
levels of 30 and 0 molecules, respectively. If a lower value of Inc
was chosen, then the results would be different but more
precise.
We further explored the possibility of analyzing the SBML

models of real genetic circuits. We picked the genetic AND gate
circuit (composed of inverters and NOR gates) from ref 19.
The genetic circuits presented in ref 19 were first developed
with a tool named Cello, which generates the Synthetic Biology
Open Language (SBOL) file.22 Unlike SBML, the SBOL
representation does not describe the behavior of a biological
model. We, therefore, first used the SBOL−SBML converter23

to generate the behavioral model of the above-mentioned real
genetic AND circuit. This SBOL−SBML converter is available
as a plug-in in iBioSim,18 which uses the default parameters
while defining the reaction kinetics during the conversion
process. Since the actual parameters, like degradation rate,
forward repression binding rate, etc., are not disclosed in ref 19,
we performed timing analysis of the real genetic AND gate
circuit using the default iBioSim parameters. However, the
parameter values can always be changed, and new parameters
can also be added to observe more realistic results.
Furthermore, the SBOL file generated by Cello does not
include the input sensor block of a circuit (which includes the
input inducers); thus, these inducers are also not included
during the SBOL−SBML conversion process. Hence, we added
the input inducers manually in the SBML model using iBioSim,
as shown in Figure 9. The components inside the yellow box
are manually added, and rest of the model is a result of SBOL-
SBML conversion process.
Figure 10 shows timing analysis results of the SBML model

of the genetic AND gate circuit.19 All of these analyses for
different degradation rates were obtained within 30 min, and
the simulations with all possible input combinations were
performed within 10 min. This is obviously faster compared to
testing the model in a lab, where the models were first placed in
the logic-0 state for 3 h and then switched to other possible
states, one by one, each for another 5 h.19

Figure 10 indicates that the results of the genetic AND gate19

are similar to those obtained for the other nine genetic circuit
models.13 In general, it is observed that the propagation delay,
threshold value, and degradation rate are all interlinked. The
output of a circuit is stable for small values of kd, but it increases

the propagation delay. The variation in the propagation delay is
also greater for small values of kd. On the other hand, the
output of a circuit becomes unstable for large values of kd but
decreases the propagation delay. Large values of kd also
contribute to a reduction in the threshold value to a certain
point. This is because the circuit becomes faster for large kd;
therefore, a small input concentration is sufficient to trigger the
output protein. The degradation rate cannot be increased
beyond a certain point because it makes the output oscillate
highly. This implies that the threshold value of a circuit cannot
be decreased beyond a certain point. This corresponds to
scaling trends for the MOSFET device, where the gate width
cannot be reduced beyond a certain number of nanometers.

Summary. In this work, we proposed a method to perform
timing analysis of genetic logic circuits, which is then
implemented and tested in D-VASim. We primarily performed
the threshold value and timing analysis on entire circuits
instead of on each individual circuit component. However, D-
VASim is also able to analyze the threshold value and timing
analysis of individual circuit components. In this work, D-
VASim estimates the overall threshold value of an entire circuit,
which gives user a minimum value of the input species required
to trigger the output of a genetic circuit. We further explored
the effects of a circuits’ timing upon varying certain parameters.
This may assist genetic circuit designers in finding an
appropriate set of parameters to achieve the desired timings

Figure 9. SBML design of the genetic AND gate circuit obtained from
ref 19. When both of the input inducers, aTc and IPTG, are present,
they form a complex with their corresponding regulators. These
regulators then gradually stop inhibiting their respective promoters,
which eventually leads to the production of the output protein, YFP.

Figure 10. Effects of varying the degradation rate (kd) on the
propagation delay and threshold value of the genetic AND gate
circuit.19 The propagation delay of the circuit decreases with the
increase in kd. Additionally, low input concentrations are required to
trigger the output of a circuit at higher values of kd. Note that these
results may differ when the actual parameter values are used.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

J

http://dx.doi.org/10.1021/acssynbio.6b00296

of a genetic circuit. D-VASim could actually help reduce the
time-consuming in vitro experiments (laboratory experiments)
needed to analyze and design genetic circuits with the desired
behavior and timings. We anticipate that the ability to analyze
the timings of a genetic circuit may open up a new research
area, helping biologists and scientists design and characterize
the timing properties of genetic circuits. Depending on the
complexity of a genetic circuit and the user-defined settings for
these analyses, D-VASim may take up to an hour to estimate
the threshold value and propagation delays. This estimation
time is still reasonable as compared to the number of days of
laboratory experimentation that are required for a single
combination of inputs and for a specific set of parameters. In
future work, we will perform threshold value analysis for each
input protein of a genetic circuit separately. We will also include
an option in D-VASim to perform these analyses faster by
running the algorithm on GPUs (graphical processor units).
Moreover, we will continue analyzing the timings of all other
circuits19 with a more detailed set of parameters.

■ METHODS
All of the experiments were performed using stochastic
simulations on D-VASim v1.2. The latest version of D-
VASim (v1.2) is available to download from http://bda.
compute.dtu.dk/downloads. The user manual and video
demonstration of D-VASim (including threshold value and
timing analysis) can be accessed at http://bda.compute.dtu.dk/
user-manuals/.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssynbio.6b00296.

Complete simulation data and the screen-captured
images. The data for each circuit is enclosed in its
respective subfolder. Readers are encouraged to go
through the “Read Me” file for a detailed explanation of
each file and folder (ZIP)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: haba@dtu.dk (H.B.).
*E-mail: jama@dtu.dk (J.M.).
ORCID
Hasan Baig: 0000-0002-8765-2604
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We would like to thank Prof. Chris Myers (University of Utah)
for his continuous support and help regarding iBioSim and for
providing us with the genetic circuit models in SBML format.
We would also like to thank Arash Khoshparvar and Nicholas
Roehner from CIDAR Lab (Boston University) for helping us
fix issues in the SBOL and SBML files. Further, we thank Alec
Nielsen (MIT) for fruitful discussions on his Cello lab
experiments.

■ REFERENCES
(1) Lucks, J., and Arkin, A. (2011) The hunt for the biological
transistor. IEEE Spectrum 48 (3), 38−43.

(2) Eisenstein, M. (2016) Living factories of the future. Nature 531,
401−403.
(3) Schukur, L., Geering, B., Charpin-El Hamri, G., and Fussenegger,
M. (2015) Implantable synthetic cytokine converter cells with AND-
gate logic treat experimental psoriasis. Sci. Transl. Med. 7 (318),
318ra201.
(4) Cases, I., and de Lorenzo, V. (2005) Genetically modified
organisms for the environment: Stories of success and failure and what
we have learned from them. Int. Microbiol. 8, 213−222.
(5) Anderson, J. C., Clarke, E. J., Arkin, A. P., and Voigt, C. A. (2006)
Environmentally controlled invasion of cancer cells by engineering
bacteria. J. Mol. Biol. 355, 619−627.
(6) Ro, D.-K., et al. (2006) Production of the antimalarial drug
percursor artemisinic acid in engineered yeast. Nature 440, 940−943.
(7) Atsumi, S., and Liao, J. C. (2008) Metabolic engineering for
advanced biofuels production from Escherichia coli. Curr. Opin.
Biotechnol. 19 (5), 414−419.
(8) Wang, B., Barahona, M., and Buck, M. (2013) A modular cell-
based biosensor using engineered genetic logic circuits to detect and
integrate multiple environmental signals. Biosens. Bioelectron. 40 (1),
368−376.
(9) Ruder, W. C., Lu, T., and Collins, J. J. (2011) Synthetic biology
moving into the clinic. Science 333 (6047), 1248−1252.
(10) Balch, M. (2003) Complete Digital Design: A comprehensive guide
to digital electronic and computer system architecture, McGraw-Hill Press,
New York.
(11) Maini, A. K. (2007) Digital Electronics: Principles, Devices and
Applications, John Wiley & Sons, Ltd.
(12) Andrianantoandro, E., Basu, S., Karig, D. K., and Weiss, R.
(2006) Synthetic biology: new engineering rules for an emerging
discipline. Mol. Syst. Biol. 2 (1), 2006.0028.
(13) Myers, C. J. (2009) Engineering Genetic Circuits, Chapman &
Hall/CRC Press.
(14) Knight, T. (2003) Idempotent Vector Design for Standard
Assembly of Biobricks, MIT Artificial Intelligence Laboratory. http://
hdl.handle.net/1721.1/21168.
(15) Baig, H., and Madsen, J. (2017) D-VASim − An Interactive
Virtual Laboratory Environment for the Simulation and Analysis of
Genetic Circuits. Bioinformatics 32 (20), 297−299.
(16) Hucka, M., et al. (2010) The Systems Biology Markup Language
(SBML): Language Specification for Level 3 Version 1 Core.
(17) Visvesvara Rao, B., et al. (2007) Electronic Devices and Circuits,
2nd ed., Pearson Education.
(18) Myers, C. J., Barker, N., Jones, K., Kuwahara, H., Madsen, C.,
and Nguyen, N.-P. D. (2009) iBioSim: A tool for the analysis and
design of genetic circuits. Bioinformatics 25 (21), 2848−2849.
(19) Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov,
V., Strychalski, E. A., Ross, D., Densmore, D., and Voigt, C. A. (2016)
Genetic circuit design automation. Science 352 (6281), aac7341.
(20) Gillespie, D. T. (1977) Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem. 81 (25), 2340−2361.
(21) Gillespie, D. T. (1976) A general method for numerically
simulating the stochastic time evolution of coupled chemical reactions.
J. Comput. Phys. 22 (4), 403−434.
(22) Bartley, B. (2015) Synthetic Biology Open Language (SBOL)
version 2.0.0. J. Integrative Bioinformat. 12 (2), 272.
(23) Roehner, N., Zhang, Z., Nguyen, T., and Myers, C. J. (2015)
Generating Systems Biology Markup Language Models from the
Synthetic Biology Open Language. ACS Synth. Biol. 4 (8), 873−879.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00296
ACS Synth. Biol. XXXX, XXX, XXX−XXX

K

http://bda.compute.dtu.dk/downloads
http://bda.compute.dtu.dk/downloads
http://bda.compute.dtu.dk/user-manuals/
http://bda.compute.dtu.dk/user-manuals/
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00296
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00296/suppl_file/sb6b00296_si_001.zip
mailto:haba@dtu.dk
mailto:jama@dtu.dk
http://orcid.org/0000-0002-8765-2604
http://hdl.handle.net/1721.1/21168
http://hdl.handle.net/1721.1/21168
http://dx.doi.org/10.1021/acssynbio.6b00296

