88 research outputs found

    Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds

    Get PDF
    © 2015 Apostolaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis

    Get PDF
    The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas

    FGF Signaling Pathway in the Developing Chick Lung: Expression and Inhibition Studies

    Get PDF
    Background: Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. Methodology/Principal Findings: In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402) presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. Conclusions/Significance: This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions tha

    Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world

    Get PDF
    The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face

    Canonical wnt signaling activity in early stages of chick lung development

    Get PDF
    Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.Rute S. Moura was supported by a grant of ON.2 SR&TD Integrated Program (N-01-01-0124-01-07), ref: UMINHO/BPD/31/2013. The funders had no role in study design, data collection and analysis

    Paracellular Absorption: A Bat Breaks the Mammal Paradigm

    Get PDF
    Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6±3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90±11%; cellobiose, 10±3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96±11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen

    Respiratory vasculatures of the intertidal air-breathing eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae)

    Get PDF
    Lacking a propensity to emerge over the mud surface, the eel goby, Odontamblyopus lacepedii, survives low tide periods by continuously breathing air in burrows filled with hypoxic water. As with most marine air-breathing fishes, O. lacepedii does not possess an accessory air-breathing organ, but holds air in the buccal-opercular cavity. The present study aimed to clarify how the respiratory vasculature has been modified in this facultative air-breathing fish. Results showed that the gills apparently lacked structural modifications for air breathing, whereas the inner epithelia of the opercula were richly vascularized. Comparison with two sympatric gobies revealed that the density of blood capillaries within 10μm from the inner opercular epithelial surface in O. lacepedii (14.5 ± 3.0 capillaries mm-1; mean ± s.d., n = 3) was significantly higher than in the aquatic non-air-breathing Acanthogobius hasta (0.0 ± 0.0) but significantly lower than in the amphibious air-breathing mudskipper, Periophthalmus modestus (59.1 ± 8.5). The opercular capillary bed was supplied predominantly by the 1st efferent branchial arteries (EBA1) and drained by the opercular veins, which open into the anterior cardinal vein. Deep invaginations at the distal end of the EBA1 and the junction with EBA2 are suggestive of blood flow regulatory sites during breath-holding and apnoeic periods. It remains to be investigated how blood flow through the gills is maintained during breath holding when the buccal-opercular cavity is filled with air

    Retinoic acid regulates avian lung branching through a molecular network

    Get PDF
    Retinoic acid (RA) is of major importance during vertebrate embryonic development and its levels need to be strictly regulated otherwise congenital malformations will develop. Through the action of specific nuclear receptors, named RAR/RXR, RA regulates the expression of genes that eventually influence proliferation and tissue patterning. RA has been described as crucial for different stages of mammalian lung morphogenesis, and as part of a complex molecular network that contributes to precise organogenesis; nonetheless, nothing is known about its role in avian lung development. The current report characterizes, for the first time, the expression pattern of RA signaling members (stra6, raldh2, raldh3, cyp26a1, rar alpha, and rar beta) and potential RA downstream targets (sox2, sox9, meis1, meis2, tgf beta 2, and id2) by in situ hybridization. In the attempt of unveiling the role of RA in chick lung branching, in vitro lung explants were performed. Supplementation studies revealed that RA stimulates lung branching in a dose-dependent manner. Moreover, the expression levels of cyp26a1, sox2, sox9, rar beta, meis2, hoxb5, tgf beta 2, id2, fgf10, fgfr2, and shh were evaluated after RA treatment to disclose a putative molecular network underlying RA effect. In situ hybridization analysis showed that RA is able to alter cyp26a1, sox9, tgf beta 2, and id2 spatial distribution; to increase rar beta, meis2, and hoxb5 expression levels; and has a very modest effect on sox2, fgf10, fgfr2, and shh expression levels. Overall, these findings support a role for RA in the proximal-distal patterning and branching morphogenesis of the avian lung and reveal intricate molecular interactions that ultimately orchestrate branching morphogenesis.The authors would like to thank Ana Lima for slide sectioning and Rita Lopes for contributing to the initiation of this project. This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the Project POCI-01-0145-FEDER-007038; and by the Project NORTE-01-0145- FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Universal mechanisms of sound production and control in birds and mammals

    Get PDF
    As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans
    • …
    corecore