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Abstract
Postcranial skeletal pneumaticity (PSP) is a condition most notably found in birds, but that

is also present in other saurischian dinosaurs and pterosaurs. In birds, skeletal pneumatiza-

tion occurs where bones are penetrated by pneumatic diverticula, membranous extensions

that originate from air sacs that serve in the ventilation of the lung. Key questions that

remain to be addressed include further characterizing (1) the skeletal features that can be

used to infer the presence/absence and extent of PSP in birds and non-avian dinosaurs,

and (2) the association between vertebral laminae and specific components of the avian

respiratory system. Previous work has used vertebral features such as pneumatic foramina,

fossae, and laminae to identify/infer the presence of air sacs and diverticula, and to discuss

the range of possible functions of such features. Here, we tabulate pneumatic features in

the vertebral column of 11 avian taxa, including the flightless ratites and selected members

of semi-volant and semi-aquatic Neornithes. We investigate the associations of these oste-

ological features with each other and, in the case of Struthio camelus, with the specific pres-

ence of pneumatic diverticula. We find that the mere presence of vertebral laminae does not

indicate the presence of skeletal pneumaticity, since laminae are not always associated

with pneumatic foramina or fossae. Nevertheless, laminae are more strongly developed

when adjacent to foramina or fossae. In addition, membranous air sac extensions and adja-

cent musculature share the same attachment points on the vertebrae, rendering the use of

such features for reconstructing respiratory soft tissue features ambiguous. Finally, pneu-

matic diverticula attach to the margins of laminae, foramina, and/or fossae prior to their

intraosseous course. Similarities in PSP distribution among the examined taxa are concor-

dant with their phylogenetic interrelationships. The possible functions of PSP are discussed

in brief, based upon variation in the extent of PSP between taxa with differing ecologies.
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Introduction

The avian respiratory system
The avian respiratory system is composed of two immobile, dorsally fixed lungs, which are the
sites of gas exchange, and (variably) nine large air sacs extending from the lungs via diverticula,
which act as mechanical bellows to ventilate the lungs but that have very limited potential (5%)
for gas exchange [1–4]. Lung volume remains constant during breathing, whereas the air sacs
contract and expand during ventilation and occupy a substantial proportion of the body cavity
[3,5,6]. In most birds, the lung is functionally and anatomically subdivided into paleopulmo
and neopulmo portions. Paleopulmonic airflow is unidirectional during the course of the respi-
ratory cycle [3,5,7]. In contrast, neopulmonic airflow is bidirectional, going toward the caudal
air sacs and away from them during inspiration and expiration, respectively [7]. Most ratites
have poorly developed neopulmonic [8] but well-developed palaeopulmonic parabronchi,
although emus have minimally developed neopulmo portions in their lungs [5,7]. All penguins
have strictly paleopulmonic lungs; i.e., they have no neopulmonic parabronchi [2–4,7]. Ducks,
grebes, and loons have both neopulmonic and paleopulmonic lungs [3,7].

The air sacs are very thin and membranous in composition, and are connected to the pri-
mary as well as the secondary bronchi by means of ostia. The air sacs consist of most of the
respiratory system’s volume [5,6,8,9]. In most birds, the nine air sacs are mainly categorized
into cranial (anterior) and caudal (posterior) groups [3,8,10–14]. According to Powell [3], the
paired air sacs along the cervical vertebrae, the unpaired air sac of the clavicular area, and the
paired air sacs of the cranial thoracic area compose the cranial set while the paired air sacs of
the caudal thoracic area and the paired air sacs of the abdominal area compose the caudal set
[3]. The ostrich (Struthio camelus) has 10 air sacs due to the acquisition of a paired clavicular
air sac [15].

The origin of the avian respiratory system has been discussed in many publications [16–19].
Unidirectional airflow was regarded as unique to crown Aves, but recent studies [20–22] have
demonstrated its occurrence in crocodilians and squamates. Specifically, artificially ventilated
lungs of Alligator mississippiensis exhibit a unidirectional flow of inserted fluid “through the
lungs. . .in a strikingly bird-like pattern” ([20]:339). More elaborately, Farmer and Sanders [20]
report unidirectional flow in alligator lungs that are both artificially ventilated, as well as in live
animals breathing naturally with surgically implanted thermistor flow probes in individual pul-
monary bronchi. Similarly, measurements of the airflow in Crocodylus niloticus lungs [23]
show considerable similarities to those of alligators [20] and birds [8]. Schachner et al. [21]
demonstrated the existence of unidirectional airflow in a specific region of the lungs/respira-
tory system of the savannah monitor lizard (Varanus exanthematicus) and Cieri et al. [22]
showed that the lungs of the green iguana (Iguana iguana), also facilitate unidirectional flow of
ventilation suggesting that “unidirectional flow is not an adaptation for expanding aerobic
capacity and did not arise coincident with vigorous sustained locomotion or with endothermy”
([22]:17220). Such discoveries allow us to place the origin of unidirectional lung ventilation
near to the base of Diapsida, prior to the split into Archosauromorpha and Lepidosauromor-
pha [22], although it is also plausible that the ability was acquired independently in the two
groups. Experimental work on the domestic fowl by Brakenbury and Amaku [24,25] showed
that flow patterns of ventilation do not change even when the ostia leading to the majority of
the air sacs are occluded (including the abdominal sac), underscoring the importance of unidi-
rectional airflow [24,25].
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Identification of postcranial skeletal pneumaticity in extant Aves
In extant birds, the air sac diverticula invade the postcranial skeleton during ontogeny as they
expand, resulting in remodelling of both cortical and cancellous bone [4] but without damag-
ing the bone structurally or biomechanically [26]. This postcranial skeletal pneumaticity (PSP)
is expressed as the consistent pneumatization of certain groups of postcranial bones by specific
diverticula [4, 6,13,27,28]. Cervical air sacs tend to pneumatize both cervical and anterior tho-
racic vertebrae and their associated ribs [4,6,28,29]. Thoracic vertebrae may also be pneuma-
tized directly from lung diverticula originating from the parabronchi [2,30]. The clavicular air
sac pneumatizes the humerus, sternum, sternal ribs and pectoral girdle, whereas the abdominal
air sacs pneumatize the posterior thoracic vertebrae, the synsacral vertebrae, the caudal verte-
brae, the pelvis, and the hind limbs (e.g., [3,4,30,31]). By contrast, the cranial thoracic air sacs
do not tend to pneumatize any portion of the postcranial skeleton (e.g., [3,6]) in the species
studied thus far, except a few species of budgerigar [27]. During embryonic development,
pneumatic diverticula attach to the bone, inducing resorption and then penetrating the cortical
bone [4,32,33], either along existing neurovascular foramina or by creating new foramina. By
definition, all of these openings become pneumatic foramina once the diverticula have invaded
the bone [4,28,34,35]. The diverticula then displace the bone marrow as they extend through
the medullary cavity, replacing it with epithelium-lined outgrowths of the air sacs [4,33]. The
invasion of some bones by diverticula during the pneumatization process is well documented,
but less is known about the developmental mechanisms behind pneumatization [36].

After studying the vertebral columns of extant crocodiles, birds, and saurischian dinosaurs,
O'Connor [4] and Wedel [37] proposed several criteria for distinguishing pneumatic perfora-
tions (foramina) and excavations (fossae) from non-pneumatic (i.e., vascular or neural)
openings. These authors noted that a pneumatic foramen (i.e., that which encompasses a diver-
ticulum) has a distinct, smooth and rounded margin, which is usually oval in outline, with a
clearly visible hole penetrating the bone [4,37]. In birds, pneumatic foramina on bony tissues
are usually much larger (at least twice the size) than purely vascular or neural foramina, with
the latter measuring no more than 1 mm in diameter, having a more circular and flat rim
in contrast to the more prominent lip that frames a pneumatic foramen (pers. obs.) (e.g.,
[4,18,28,29,32,37]). Wedel (pers. comm.) has pointed out that in very small birds, such as hum-
mingbirds, the pneumatic foramina would be so small as to be indistinguishable from neuro-
vascular foramina. At the other extreme, whales have vascular foramina in their vertebrae up
to 3 mm in diameter (Wedel, pers. comm.; also see [38]). Thus, when studying extinct taxa,
size alone cannot be used to distinguish pneumatic and neurovascular foramina: consequently,
foramen wall texture, shape, and position need to be taken into account [4,28,38]. Nevertheless,
there are cases where an opening may house both pneumatic and other soft tissues (e.g., adi-
pose tissues) [28] and this observation has been verified by observations on the vertebral fossae
of birds and crocodyliforms (e.g., [17,28,38,39]).

Pneumatic foramina can also be distinguished by their location and number. Non-pneu-
matic foramina are usually located on the ventrolateral surface of the centrum and, sometimes,
on the inner wall of the neural canal, and are much less frequent in number (usually no more
than two) than pneumatic foramina [4,29]. Furthermore, pneumatic foramina can form on
every surface of a vertebra, particularly on the centrum, transverse process, neural arch, and
neural spine (pers. obs.; also see [4,28,36–39]).

The identification of pneumatic fossae is more ambiguous because they can house a variety
of tissues. For example, as mentioned earlier, the shallow excavations on extant crocodile verte-
brae lack pneumatic features and contain adipose tissue, as well as acting as insertion and origi-
nation areas for musculature [28]. Similar comments apply to the excavations identified as
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'fossae' in birds, although pneumatic structures also fill these depressions [28]. Nevertheless,
pneumatic fossae in birds tend to be rather deep and wide, usually with laminated margins,
and are smooth-edged [28,29]. They often have small foramina within their boundaries, or
may lead to a cluster of smaller interconnected fossae that further penetrate the bone.

Pneumatic bones have several different characteristics from apneumatic bones
[26,28,29,34,39]. A pneumatic bone is lighter as its marrow has been replaced by epithelial out-
growths of the invasive pneumatic diverticula (e.g., [6,26,36]). Such bone is also less oily in tex-
ture and lighter in color [29]. Pneumatic bones have less vascularization and possess features
such as pneumatic foramina and pneumatic fossae [29]. In some cases, the pneumatic divertic-
ulum does not completely invade the bone, but instead leaves an excavation or depression (a
blind-ending fossa) on the surface of the bone [33]. Bone pneumatization is reduced in the
postcranial skeleton of all diving birds such as gulls, ducks, cormorants, loons, grebes, rails, and
penguins [6,36].

Generalizations regarding the variability and level of development of avian PSP, such as
reduced pneumaticity in diving forms, are numerous (e.g., [5,6,36,40]) but, only recently, this
subject has undergone phylogenetic scrutiny in detail. In his quantitative and comparative
studies of avian pneumaticity O’Connor [4,28,36] has documented a common pattern in
anseriforms (ducks, geese, swans) in which the cervical and thoracic vertebrae were pneuma-
tized by the lungs as well as by the diverticula of the cervical and abdominal air sacs. O’Connor
identified this as the ‘common anseriform pattern’ [4,28,36], with several deviations from it,
interestingly noting reductions and expansions of the expression of pneumaticity in different
avian clades. For example, ducks that utilize diving as a method of foraging showed reduced, or
even completely absent skeletal pneumatization [36]. The correlation between pneumaticity
and body size was also investigated, resulting into a positive relationship between the Pneuma-
ticity Index (PI%—a metric that was developed for quantifying skeletal pneumaticity) and
body mass ([4,36]; see also [41]). The PI% (Table 1) can be calculated by dividing the number
of pneumatized anatomical units (for example, vertebrae) belonging to a particular set (verte-
bral column) over the total number of anatomical units of that set [4]. Use of the PI% allows
quantification of the extent of pneumaticity and comparison of the degree of relative pneuma-
ticity among species with different vertebral counts [4]. It was also observed that, as body mass
increased, the extend of postcranial skeletal pneumatization was also increased [36].

During ontogeny, the first to be pneumatized are the cervical and anterior thoracic verte-
brae, by the cervical air sac diverticula [15,35]. The diverticula extending from the abdominal
air sacs pneumatize the posterior thoracic vertebrae and, later in ontogeny, the synsacrum [36].
Despite the presence of ‘intermediate’ states of pneumaticity among birds, two main cases of
PSP have been recorded in the small subset of bird clades that has been examined in detail:
birds whose postcranial skeleton possesses high expression of pneumatic foramina and deep
fossae (pneumatic birds: e.g., Struthioniformes [ostriches], Rheiformes [rheas], Casuariiformes
[cassowaries]) (e.g., [3,8,15]) and birds whose skeleton has limited expression of pneumatic
foramina and frequent expression of blind-ending fossae, resulting in reduced or absent PSP
(e.g., [4,8,11,36]) (semipneumatic and apneumatic birds: e.g., Apterygiformes [kiwis], Sphenis-
ciformes [penguins], Anseriformes [ducks], Gaviiformes [loons], Podicipediformes [grebes]).
All ratites exhibit highly expressed PSP (this study) in most vertebral and appendicular ele-
ments (see Tables 2–5 and S1 Table and S3–S9 Tables) and, therefore, high PI%s, in which the
humeri and femora are pneumatized (via the interclavicular and abdominal air sacs, respec-
tively [2,4–6]). In addition, there are few rare cases (such as in rhea and penguin–see S1 Table,
S7 Table and S10 Table) where the distal leg elements (tibiotarsus and tarsometatarsus) exhibit
foramina, which are included in our PI% measurements but they are considered ambiguous
with respect to pneumatization until dissection studies can confirm that they are indeed
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invaded by air sac diverticula. PSP in other avian clades (e.g., passerines, raptors) has not been
extensively studied. The strong correlation between PSP and the presence of air sac diverticula
in extant birds can be used to infer the presence of these diverticula in the absence of preserved

Table 2. Distribution of pneumatic elements on the cervical column per taxon. Presence (+) and absence (-) of pneumatic characters found on the cer-
vical vertebrae from specimens of the 11 taxa studied. The penguin with the pneumatised vertebrae is Pygoscelis papua (NHMUK unregistered). For more
details see S1 Table and S3–S13 Tables. Abbreviations: PF, pneumatic foramina; F, fossae; L, laminae; Sept., septated.

Cervical Vertebrae

Taxon/common name No. of vertebrae Pneumatic foramina Laminae Fossae PF+L F+L PF+F Sept.PF

Tinamiformes Tinamou 10–15 + + + - - + -

Apterygiformes Kiwi 14 + + + - + - -

Dinornithiformes Moa 15 + + + + + - -

Struthioniformes Ostrich 15–17 + + + + + + +

Rheiformes Rhea 14 + + + + + + +

Casuariiformes Cassowary 14 + + + + + + +

Dromaiformes Emu 18 + + + + + + +

Anseriformes Duck 14 + + + + + + -

Gaviiformes Loon 15 - + + - - - -

Podicipediformes Grebe 19 + + + - - - -

Sphenisciformes Penguin 13–14 + + + - - - +

doi:10.1371/journal.pone.0143834.t002

Table 1. General status of each avian taxon studied. Tabulation of bird taxa with their orders, indicating locality, state of preservational condition of the
specimen (St.pr.con.), number of specimens, pneumaticity status, Pneumaticity Index (PI%), ontogenetic stage, and registered specimen number (Reg.sp.
no.). Abbreviations: D, diver; FL, flyer; FLS, flightless; ND, non-diver; P, pneumatic; SP, semi-pneumatic.

Taxa/common name Locality St.pr.con. No.
spec.

Life mode/
Pneumaticity

status

PI% Ontogenetic
stage

Reg.spec.no.

Tinamiformes
Tinamou

Brazil, Sierra
Chapada,
Argentina

Complete, loose 5 FL/ND/P 69/77/
92/92/
92

Adults S/1972.1.23 S/1972.2.6.7 S/
1972.1496 S/1972.3.24.5 S/

1972.2.16.62

Apterygiformes Kiwi New Zealand Complete,
articulated

3 FLS/ND/P 23/61/
77

Adult Adult
Subadult

1456 1488 1458

Dinornithiformes
Moa

New Zealand Complete,
articulated

1 FLS/ND/P 70 Subadult Cg976

Casuariiformes
Cassowary

N/A Complete
articulated, skull

missing

1 FLS / ND / P 54 Adult Af963

Dromaiformes Emu N/A Complete,
articulated

1 FLS/ND/P 77 Subadult Ab4163

Struthioniformes
Ostrich

N/A Devon, UK Complete,
articulated Neck

only

2 FLS/ND/P 85 Adult Subadult Af962 Ag1174

Rheiformes Rhea South America Complete, loose 1 FLS/ND/P 100 Adult 2.5.1

Anseriformes Duck N/A Complete,
articulated

2 FL/SP 77/77 Subadults N/A

Gaviiformes Loon Sennen Cove,
Cornwall, UK

Complete, loose 2 FLS/D/SP 46/46 Adults S/1996.68.1 S/1985.18.1

Podicipediformes
Grebe

London, UK Complete, loose 1 D/SP 61 Adult S/1952.1.47

Sphenisciformes
Penguin

N/A Complete,
articulated

2 FLS/D/SP 23/69 Adults N/A

doi:10.1371/journal.pone.0143834.t001
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soft tissues [4,18,28,30]. Therefore, PSP can be used as a possible indicator of these soft tissue
structures in extinct taxa and thus provide information on the evolution of amniote respiratory
systems.

Identifying PSP in extinct non-avian dinosaurs and pterosaurs
Postcranial pneumatic features have been documented in extinct non-avian archosauriforms
for more than a century [42,43]. The anatomical and positional similarities of these features to
those of modern birds, and the assumption that they were formed by homologous developmen-
tal processes, implies that they can provide evidence for the presence of at least some avian-like
respiratory soft tissues (diverticula) in a variety of extinct archosaur taxa [28]. The most con-
servative phylogenetic optimizations indicate that PSP arose on three occasions within
Ornithodira (within Pterosauria, Theropoda and Sauropodomorpha), although it seems likely
that there might have had a single origin in the common ancestor of ornithodirans with

Table 3. Distribution of pneumatic elements of thoracic column per taxon. Presence (+) and absence (-) of pneumatic characters found on the thoracic
vertebrae from specimens of the 11 taxa studied. The penguin with the pneumatised vertebrae is Pygoscelis papua (NHMUK unregistered). For more details
see S1 Table and S3–S13 Tables. Abbreviations: PF, pneumatic foramina; F, fossae; L, laminae; Sept., septated.

Thoracic Vertebrae

Taxa/common name No. of vertebrae Pneumatic foramina Laminae Fossae FP+L F+L FP+F Sept.PF

Tinamiformes Tinamou 6–7 + + + + - - +

Apterygiformes Kiwi 8 + - - - - - -

Dinornithiformes Moa 7 + + + + + - +

Struthioniformes Ostrich 6 + + + + + + +

Rheiformes Rhea 8 + + + + - + -

Casuariiformes Cassowary 7 + + + + + + +

Dromaiformes Emu 7 + + + + + + +

Anseriformes Duck 6–8 + + + - - + +

Gaviiformes Loon 7 - + + - - - -

Podicipediformes Grebe 8 + + + - - - +

Sphenisciformes Penguin 7–9 + - + - - - +

doi:10.1371/journal.pone.0143834.t003

Table 4. Distribution of pneumatic elements of synsacral column per taxon. Presence (+) and absence (-) of pneumatic characters found on the synsa-
cral vertebrae from specimens of the 11 taxa studied. The penguin with the pneumatised vertebrae is Pygoscelis papua (NHMUK unregistered). For more
details see S1 Table and S3–S13 Tables. Abbreviations: PF, pneumatic foramina; F, fossae; L, laminae; Sept., septated.

Synsacral Vertebrae

Taxon/common name No. of vertebrae Pneumatic foramina Laminae Fossae PF+L F+L PF+F Sept.PF

Tinamiformes Tinamou 5–6 + - - - - - -

Apterygiformes Kiwi 7 + - - - - - -

DinornithiformesMoa 13 + + - - - - -

Struthioniformes Ostrich 15 + + - + - - +

Rheiformes Rhea 10 - + - + + + +

Casuariiformes Cassowary 17 - - + + + + -

Dromaiformes Emu 5 + - - - - - -

Anseriformes Duck 11–13 + - - - - - -

Gaviiformes Loon 10 + - - - - - -

Podicipediformes Grebe 15 + - - - - - -

Sphenisciformes Penguin 9–13 + - - - - - -

doi:10.1371/journal.pone.0143834.t004
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subsequent loss in ornithischians [44–46]. It has also been suggested that PSP may represent
an ancestral archosaurian characteristic [16,17], although this suggestion requires further
study and is difficult to test [45].

Ornithodira: Theropoda. Early theropods, like the Late Triassic taxaHerrerasaurus and
Staurikosaurus, exhibit well-developed laminated fossae (fossae framed by laminae) on their
dorsal vertebrae [45]. Their cervical and caudal vertebrae lack pneumaticity. It has been sug-
gested that laminae may indicate the presence of pneumatic diverticula [39], but the presence
of laminae and fossae alone has been considered ambiguous evidence for an avian-like respira-
tory system [38,45]. Most theropods (e.g., abelisaurids, tetanurans) possess fully developed and
variable PSP, including complex features like laminated fossae, laminated foramina, and
foramina within fossae [47,36]. It has been demonstrated that throughout phylogeny, gradual
expression of vertebral pneumatization begins in the dorsal series and expands to the cervical
and sacrocaudal series [41]. Other non-PSP-related evidence from non-avian dinosaurs sug-
gests they possessed avian-like ventilation [48,49]. The uncinate processes, specialized gastralia,
sterna, and pelvic girdles in non-avian theropods provided attachment points for the same
muscles that facilitate avian-style breathing in extant birds [48,49] and the gastralia, in particu-
lar, may have assisted theropods in aspiration [50]. Cursorial avian species, like ostriches and
emus, do not possess highly developed pectoral muscles that are important for flying, and,
therefore, the lever-arm action provided by the uncinate processes is of no use [48]. Non-avian
maniraptoran dinosaurs possessed long uncinate processes [48], signifying an enhanced mus-
culoskeletal mechanical advantage. As studies have demonstrated in extant avian species [48],
such an advantage is functionally important in unidirectional ventilation. A caveat here is that
alligators, crocodiles, varanids, and iguanas employ a unidirectional flow during ventilation
[20–23] but lack uncinate processes.

Ornithodira: Sauropodomorpha. Postcranial (especially axial) pneumaticity is also pres-
ent in sauropodomorphs [18,37–39,46]. These features are first seen in basal taxa (‘prosauro-
pods’), where they are poorly expressed, but become more elaborate in eusauropods. The
characters used to infer PSP vary from the presence of simple fossae on the external surfaces of
the vertebral centra to internal honeycomb-like structures [18]. Many ‘prosauropods’ (e.g., Pla-
teosaurus, Thecodontosaurus, Eucnemesaurus) show expression of laminated fossae (and rarely
foramina) in their posterior cervical and anterior dorsal vertebrae, which become more

Table 5. Distribution of pneumatic elements of caudal column per taxon. Presence (+) and absence (-) of pneumatic characters found on the caudal
vertebrae from specimens of the 11 taxa studied. The penguin with the pneumatised vertebrae is Pygoscelis papua (NHMUK unregistered). For more details
see S1 Table and S3–S13 Tables. Abbreviations: PF, pneumatic foramina; F, fossae; L, laminae; Sept., septated; N/A, non-available.

Caudal Vertebrae

Taxa/common name No. of vertebrae Pneumatic foramina Laminae Fossae PF+L F+L PF+F Sept.PF

Tinamiformes Tinamou 5 - - - - - - -

Apterygiformes Kiwi 6 - - - - - - -

Dinornithiformes Moa N/A N/A N/A N/A N/A N/A N/A N/A

Struthioniformes Ostrich 7 + - - - - - -

Rheiformes Rhea 4–5 + - - - - - +

Casuariiformes Cassowary 8 - - - - - - -

Dromaiformes Emu 7 - - - - - - -

Anseriformes Duck 5–7 + - - - - - -

Gaviiformes Loon - - - - - - - -

Podicipediformes Grebe - - - - - - - -

Sphenisciformes Penguin 7–9 - - - - - - -

doi:10.1371/journal.pone.0143834.t005
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complex in derived taxa close to the origin of sauropods [51]. Most of the fossae observed in
prosauropods are blind-ending, so they do not provide strong evidence for invasive pneumati-
zation [38]. Non-neosauropod eusauropods (e.g., Tazoudasaurus, Antetonitrus) possess pneu-
matic foramina and fossae in their vertebral columns and, especially, mamenchisaurids (e.g.,
Mamenchisaurus, Omeisaurus, Shunosaurus) exhibit complex pneumatization, potentially
acquired independently of that seen in neosauropods ([18,52]). Neosauropods, i.e., Diplodocoi-
dea and Macronaria, show increasing expression of complex pneumatic features (laminated
pleurocoels, laminated fossae, foramina within shallow fossae) and a gradual remodelling of
the vertebrae into complex lattice-like structures (camerate and camellate aeration)
[18,37,38,46,53–56].

Ornithodira: Pterosauria. Pterosaur bones have been examined for almost as long as
those of non-avian dinosaurs and recent work [44,57] has demonstrated the presence of PSP in
the cervical and dorsal vertebrae and ribs of Late Triassic and Early Jurassic pterosaurs (e.g.,
Raeticodactylus filisurensis, Eudimorphodon sp., Dimorphodon macronyx) suggesting the possi-
ble presence of avian-like air sacs. Pneumatization of the axial column is also common in Juras-
sic and Cretaceous taxa (e.g., Anhanguera santanae; [44]).

Aims of this study
Most research focusing on PSP has addressed the association between fossae, foramina, and
invasive air sac diverticula by documenting their presence and variability in the vertebral col-
umns of various avian, non-avian dinosaur, and pterosaur taxa. The inference of invasive air
sacs is often considered the sine qua non for deducing the presence of avian-like respiratory
features in extinct taxa. However, modern birds also possess diverticula that do not invade the
postcranial skeleton, but intervene between soft tissues, such as muscles and organs. Moreover,
this inference is not always secure, as Milani [58] and Perry [59] have shown that lizards, such
as varanids and chameleons, have lung diverticula that do not invade the postcranial skeleton.
Conversely, there are fish, such as Pantodon, which have diverticula extending from the swim
bladder that invade the skeleton, most significantly the vertebral column [60,61], so the inter-
actions between diverticula and osteology are sometimes unexpected. The presence/absence of
these non-invasive diverticula is conjectural in fossil material due to the absence of osteological
correlates [45,46,57]. Unfortunately, this deficit obscures the early evolution of avian-like respi-
ratory systems, as it is likely that the first pneumatized archosaurs achieved the first steps
toward full pneumatization by evolving air sacs that were not invasive (e.g., [36,45,62]) or,
alternatively, that these first archosaurs had bony tissues invaded by lung diverticula instead of
air sacs.

Vertebral laminae are often overlooked in studies of PSP, although it has been suggested
that they are associated with diverticula [39,45]. Anatomical studies on extant birds (e.g.,
[4,6,8–10,12–14,16,28,36]) have not considered the detailed interrelationships between compo-
nents of the air sac system and the laminae that consistently frame pneumatic fossae and
foramina. We hypothesize that laminae may act as attachment sites for air sacs and diverticula
close to their points of entry into bones, as well as supporting the non-invasive components of
the air-sac system. Many extinct archosaurs (e.g., pseudosuchians, ornithischians) lack unam-
biguous evidence of pneumatic foramina, indicating that they lacked invasive air sac divertic-
ula; nevertheless, these taxa often possess complex and well-developed vertebral lamination
and deep vertebral fossae [45]. We chose Struthio camelus, the ostrich, as our primary taxon,
mainly because of its size and the availability of materials, as well as its classification as a
palaeognath, thus being less modified in light of flight adaptation than other avian clades (see
also S1 File).
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The aims of this study are: i) to determine the nature of the soft tissues that are associated
with the vertebral laminae in Struthio camelus; ii) to investigate whether the presence of lami-
nae and pneumatic structures (both soft tissue and hard tissue) are correlated; iii) to test
whether the presence of laminae alone can be a good indicator of the presence of air sac
diverticula.

In order to do this, we document the relationships between soft-tissue features (e.g., mus-
cles, nerves, and pneumatic diverticula) and vertebral anatomy, primarily laminae and their
associated fossae in the ostrich neck. We sought to determine if fossae and laminae can be used
as osteological correlates of air sac diverticula in extant birds and, if so, what the implications
of this relationship might be for understanding the structure and function of the non-avian
dinosaur respiratory system. Finally, we assess whether there is a correlation between the
occurrence of PSP in selected avian families and their phylogenetic relatedness.

Institutional Abbreviations
University of Bristol, School of Earth Sciences (BRSUG), Bristol City Museum and Art Gallery
(BRSMG), University of Bristol School of Veterinary Sciences (BRSUV), Natural History
Museum, London and Tring (NHMUK).

Materials and Methods

Vertebral laminae
Vertebral laminae are osseous ridges connecting two or more vertebral landmarks and may
also form the boundaries of vertebral fossae and foramina. They are present in many extant
and extinct archosaurs [45,55,56]. Wilson and colleagues [55,56] documented 19–27 possible
vertebral laminae in sauropod dinosaurs, many of which can also be found in other dinosaurs
(including extant birds), crurotarsan archosaurs and pterosaurs, and developed a consistent
terminology for these structures. Most archosaurs exhibit a common series of laminae that
extend between the centrum and neural arch, and between various neural arch processes (e.g.,
centrodiapophyseal laminae, pre- and postzygodiapophyseal laminae), but sauropods and
non-avian theropods possess many more that are not present in other archosaur groups (e.g.,
[18,28,36,38,41,44]). In sauropods, non-avian theropods, and occasionally birds, laminae of the
same type may have anterior, middle, and posterior expressions, form lattice-like interconnec-
tions, or the vertebrae may even possess 'stranded', 'segmented', and 'accessory' laminae (e.g.,
[55,56]). Examples of these include the prespinal and postspinal laminae, which are positioned
on the anterior and posterior surfaces of the neural spine, respectively. The standard abbrevia-
tions used below for these laminae and fossae are listed in S14 Table (following [55,56]).

Osteological observations
The location and distribution of axial PSP was assessed in 11 avian families (Struthionidae,
Rheidae, Casuariidae, Dromaiidae, Dinornithidae, Apterygidae, Tinamidae, Anatidae, Sphenis-
cidae, Gaviidae, and Podicipedidae). These clades were chosen for their diverse locomotory
modes (cursorial, semi-aerial, semi-aquatic).

Twenty-one specimens were examined with an emphasis on their cervical columns: two
ostriches (Struthio camelus—one skeleton BRSMG Af 962 and one fresh neck specimen
BRSMG Ag1174 series, used for dissection), one moa (Emeus crassus—BRSMG Cg 976), one
emu (Dromaius novaehollandiae—BRSMG Ab 4163), one cassowary (Casuarius galeatus—
BRSMG Af 963), one rhea (Rhea americana—NHMUK 2.5.1), three kiwis (Apteryx australis
haasti—NHMUK 1456, Apteryx australis lawri—NHMUK 1488, Apteryx oweni—NHMUK
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1458), five tinamous (Crypturellus obsoletus—NHMUK S/1972.1.23, Crypturellus undulatus—
NHMUK S/1972.2.6.7, Eudromia elegans—NHMUK S/1972.1496, Nothura maculosa—
NHMUK S/1972.3.24.5 and Rhynchotus rufescens—NHMUK S/1972.2.16.62), two unregis-
tered penguins (Pygoscelis papua—NHMUK and Pygoscelis antarcticus—BRSUV), two ducks
(Anas gen.—BRSUV- unregistered andMelanitta gen.—BRSMG Af 974), two loons (Gavia
adamsii—NHMUK S/1996.68.1 and Gavia stellata—S/1985.18.1), and one grebe (Podiceps
major—NHMUK S/1952.1.47).

The following information was recorded for each specimen (see Table 1): size measurements
(total height and total length wherever applicable: see S2 Table), preservational state (e.g., com-
plete, articulated, well-preserved, partially damaged); Pneumaticity Index (PI%) [4,28] and the
specimen's resultant pneumaticity status (i.e., pneumatic, semi-pneumatic, apneumatic) based
on the ratio of pneumatized bones (anatomical units [AUs]) in a given set over the total num-
ber of the bones of that set (vertebrae-vertebral column); ontogenetic stage (i.e., subadult,
adult); presence/absence of pneumatic features relative to vertebral landmarks (position, orien-
tation, size); and locomotor mode (i.e., non-volant, volant, diver, non-diver). Thirteen AUs
(see Tables 2–5 and S1 Table) were designated for comparison between taxa with morphologi-
cal differences in their vertebral columns, namely: cervical vertebrae (CV), dorsal (thoracic)
vertebrae (DV/TV), synsacral vertebrae (SSV), caudal vertebrae (CAV), femur (FM), humerus
(HM), scapula (SC), coracoid (CC), sternum (ST), ribs (RB, both dorsal and sternal ribs), fur-
cula (FC), tibiotarsus (TT), and tarsometatarsus (TM). Pneumatic taxa are defined as those
with PI>90%, semi-pneumatic with PI<90% and apneumatic with PI of 0% (Table 1 and S1
Table).

The distribution and presence of pneumaticity was also tabulated for all 11 taxa for each
vertebral region (see Tables 2–5, S1 Table and S3–S13 Tables).

The presence of pneumaticity on either side of a bilaterally symmetrical AU (e.g., present on
a left dorsal rib, but absent on the corresponding right dorsal rib) was considered sufficient to
allow scoring as present in that AU.

For bones, muscles and osteological pneumatic features we follow the anatomical nomencla-
ture of Baumel et al. [63] and Ghetie et al. [64].

Dissection and observations on soft tissue and vertebral structures
The research described herein complied with protocols approved by the University of Bristol
Ethics of Research Committee and adhered to the legal requirements of the country (UK) in
which the research was conducted. No permits were required for the described study, which
complied with all relevant regulations.No special permits or permit numbers were needed for
the acquisition of the ostrich neck material. The ostrich neck was obtained directly from
farmed ostriches that were culled for meat. The ostrich specimen came from MNS Ostriches
Limited, an ostrich farm in Devon, UK. The ostriches are legally and humanely killed for meat
production. The guidelines state that 'humanely' corresponds to be stunned electrically and
then have their throats cut. This is performed by trained abattoir workers, and not by farmers
or researchers. The heads and necks are by-products of the farming industry.

The dissection was carried out on a skinned 70 cm long neck of Struthio camelus, from a
subadult farmed individual of about 6 months old that had been frozen since 2007. The ostrich
neck was delivered to us decapitated and severed from the rest of the body, thus any anterior
(i.e., cervicocephalic) or posterior (i.e., cervicothoracic) air sac diverticula were not present,
resulting in incomplete and partially damaged air sacs and their diverticula on the anteriormost
and posteriormost ends of the neck. Being in such a condition, the neck was not suitable for
injecting with latex or any other appropriate material, prior to the dissection, in order to
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completely determine the exact morphology, position, and extent of the cervical air sacs and
their diverticula along the neck. Nevertheless, the neck was not ruptured in any other places
and the air sac diverticula were not damaged during the dissection. All types of tissues were
found in place and unaltered, and their identifications were verified against relevant sources
including Baumel [63] and Ghetie [64]. The available neck was composed of 15 cervical verte-
brae (BRSMG Ag1174.1 –Ag1174.15). The atlas and axis were not present and the 17th vertebra
had been cut in half.

Predetermined groups of subcutaneous dermal and muscular tissues were systematically
removed until the vertebrae were exposed without destroying the cervical air sac diverticula.
The surface muscle groups were removed layer by layer, longitudinally across the neck. Once
the vertebral connective muscles were reached, the air sac membranes were located and
stretched with the aid of tweezers. Connective tissues were carefully removed to ensure that the
air sac membranes would suffer the least damage possible.

After removal of the intervertebral tissues, the points at which the diverticula invaded the
cervical vertebrae were recorded. Following this, all soft tissues were removed from the verte-
brae and the positions of the pneumatic foramina, fossae, and laminae were recorded and com-
pared with those obtained from other avian taxa.

Following tissue removal, the vertebrae were completely defleshed to facilitate measure-
ments and photography. This was accomplished by bathing the vertebrae in simmering water
at 200°C for three hours per day for two days, to macerate the residual soft tissue for further
removal. The bones were then bleached to remove all remaining soft tissue traces, using 4 l of
water with 800 ml household bleach and 100 ml of dishwashing surfactant. Fat residues were
removed by immersion in cold water containing two spoonfuls of an enzymatic clothing deter-
gent. The dissection and cleaning processes were recorded through notes, sketches, and digital
photographs.

Results

Observations on the Struthio camelus cervical column
The ostrich neck is composed of 17 vertebrae, but the axis and atlas were missing from our
specimen (BRSMG Ag1174.1–15), leaving 15 cervicals (CV3–17) in total. All measurements,
unless otherwise stated, signify diameter.

CV3 (BRSMG Ag1174.1; length: 4.2 cm, height: 3 cm, width: 3.3 cm) is mediolaterally and
dorsoventrally compressed but anteroposteriorly elongated (Fig 1B). The neurocentral suture
is faintly visible. The neural spine, prezygapophyses and postzygapophyses are well developed.
The postzygapophyses bear poorly developed but distinguishable epipophyses; the diapophy-
seal ends are not prominently expressed but the transverse processes and the parapophyses are
well formed. The costotransverse rings are present and there are no foramina on the dorsal side
of the transverse processes. On the lateral sides of the centrum, pleurocoels (i.e., deep and very
wide fossae occupying most of the lateral sides of the vertebral centrum) lead to deep (10 mm)
fossae (one on each side) beneath the transverse processes. The ventral margin of this large
fossa is a lamina-like ridge that connects the medial wall of the arcocostal lamina with the cen-
trum. In addition, within each of the deep lateral fossae, a pneumatic foramen (2 mm) pierces
the centrum in a mediodorsal direction and extends into the interior of the vertebra. On the
anteroventral side of the lateral fossa, a cluster-like network of depressions is present, with each
depression leading to either a small fossa or foramen (with each opening being approximately
1–3 mm).

Moving into the costotransverse rings, there are several openings (foramina) leading into
the centrum dorsomedially. These openings are formed between sheaths of bone, forming
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Fig 1. Dorsal view of ostrich (Struthio camelus) cervical column. (A) Posterolateral view of CV4 (BRSMG Ag1174.2), revealing the foramen
pneumaticum ventral to the lamina arcocostalis, the foramen pneumaticum ventral to the processus transversus, and the foramen transversarium; note the
vertebral foramen located posterior to the processus spinosus; (B) Ventral view of CV3 (BRSMG Ag1174.1) from which the foramen vertebrale laterale, the
crista ventralis that runs along the corpus, and the pneumatic foramina on the anterior-most margin of the vertebral foramen can be viewed; (C) Left
anteroventral view of a cervical vertebra (CV10: BRSMG Ag1174.8) exposing the pneumatic foramen on the inner wall of the vertebral foramen and the
multiple pneumatic foramina within the costotransverse ring; (D) Left ventrolateral view of CV5 (BRSMGAg1174.3) showing the centrodiapophyseal lamina,
the lamina arcocostalis just above the pneumatic foramen on the arcocostal surface's posterior-most margin, and a pneumatic foramen on both the corpus
along the line of the neurocentral suture and on the posterolateral surface of the cotyle; (E) Ventral view of CV11 (BRSMG Ag1174.9) exposing the
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bridge-like connections (i.e., like a cluster). On the inner wall of the costotransverse ring are
multiple small, 1–3 mm pneumatic foramina. Three small (1 mm) foramina are present along
the ventromedial margin of the right prezygapophysis. Additionally, on the anteroventral side
of the centrum, between the parapophyses and posterior to the articular condyle, there are four
small (1 mm) foramina. On the dorsal surface of the centrum, one pneumatic foramen (2–3
mm) is positioned at the posterior-most end of the vertebral foramen. The vertebra possesses
spinoprezygapophyseal (sprl) and spinopostzygapophyseal (spol) laminae, but no other
laminae.

CV4 (BRSMG Ag1174.2; length: 5.5 cm, height: 3 cm, width: 3 cm) is mediolaterally com-
pressed with all basic landmarks being present (Fig 1A). A pneumatic foramen (4 mm) is pres-
ent on the lateral side of the left arcocostal lamina. It is positioned on the posterior-most end of
the arcocostal flange and its ventral margin is part of a lamina-like ridge that extends along the
arcocostal lamina, connecting the anterior with the posterior margins of the flange. This fora-
men and the arcocostal lamina are positioned within a shallow excavation on the arcocostal
flange. The foramen's dorsal border is framed by the arcocostal lamina. Between the transverse
processes and the centrum is a deep fossa measuring 5 mm in depth and 8 mm in length. The
fossa is anteriorly directed leading to a camellate network that contains four small (2 mm)
pneumatic foramina leading farther inside the vertebra.

On the interior dorsal surface of the costotransverse ring walls there are three pneumatic
foramina of 2–3 mm diameter. In addition, on the anterior part of the centrum on the right
side, there is a narrow pneumatic foramen (8 mm long) that is dorsally directed and masked
from its dorsal margin. On the left side, there is a fossa whose margins are part of the arcocostal
lamina that extends along the costotransverse ring. The fossa is 6 mm long, directed anteriorly
and might enclose foramina (which are not clearly visible). Directly dorsal to that, there is a
small (1 mm) foramen on the posterior-most end of the transverse process flange. This is posi-
tioned anteroventral to the lamination located at the middle of the ventral-most margin of the
neural arch. On the ventrolateral side of this lamina there is a longitudinal lamination connect-
ing the anterior-most end of the postzygapophysis with the uppermost arcocostal lamina of the
ring. Ventrally and anterior-most on the centrum there is a fossa (10 mm) with two pneumatic
foramina (1 mm) around it. Midway on the ventral surface of the vertebral foramen is a narrow
foramen (5 mm long) leading into the centrum. Both anterior and posterior ends of the verte-
bral foramen are deeply excavated and closed without any indications of aeration. The neuro-
central suture is barely visible except along its anterior-most end where the fossae/foramina/
laminae complex is prominently expressed.

CV5 (BRSMG Ag1174.3; length: 6.5 cm, height: 3.1 cm, width: 2.8 cm) is dorsoventrally
compressed (i.e., longer than tall) with all basic landmarks present, and the neural spine is
short and mediolaterally flattened. The costotransverse rings are fully formed and the ribs are
present. The sprl and spol are clearly defined. On the left side there is a 3 mm long, narrow
pneumatic foramen, which is triangular in outline, anteromedially directed, and whose margins
are formed by two laminae. The first lamina connects the postzygapophysis with the centrum
(centropostzygapophyseal—cpol) and continues anteriorly to meet the two arcocostal laminae
(20 mm and 15 mm long) ending on the exterior surface of the costotransverse ring. These two
arcocostal laminae originate from the diapophysis. The second lamina is a bony ridge

centroparapophyseal laminae, two pneumatic foramina on the ventral side of the left processus costarius and one on the right side of the cotyle; (F) Ventral
view of CV9 (BRSMG Ag1174.9) showing pneumatic foramina on both hypapophyses and both centroparapophyseal laminae. The scale bar corresponds to
the main cervical column. The main cervical column photograph was taken by Simon Powell. Abbreviations: cv crista ventralis; cdpl centrodiapophyseal
lamina; cpal centroparapophyseal lamina; pac processus articularis cranialis; paa processus articularis caudalis; fp foramen pneumaticum; ft foramen
transversarium; fvl foramen vertebrale laterale; la lamina arcocostalis; pc processus costarius; ps processus spinosus.

doi:10.1371/journal.pone.0143834.g001
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extending along the centrum, which meets the arcocostal lamina anteriorly. Below the ventral-
most arcocostal lamina there is a circular pneumatic foramen (3 mm) just before the posterior-
most margin of the arcocostal flange. On the ventral side, hypapophyses extend medially from
the anterior-most origins of the cervical ribs. A foramen (1 mm) is also present on the ventro-
medial side of the left parapophysis. On the right side a 1 mm pneumatic foramen whose dorsal
margin is the centro-arcocostal lamina lies on the lateral facet of the neural arch. The two arco-
costal laminae of the right side are 20 mm and 10 mm long respectively, and both emerge from
the right diapophysis. In addition, there is a pneumatic foramen (2 mm) located on the poste-
rior-most margin of the arcocostal flange and below the posterior-most arcocostal lamina. The
anterior and posterior sides of the neural spine are deeply and narrowly excavated and blind
ending. The neurocentral suture is barely visible.

CV6 (BRSMG Ag1174.4; length: 7 cm, height: 3 cm, width: 3 cm) is mediolaterally com-
pressed (i.e., longer than tall), with all basic landmarks present. The spine is short and flattened
on both lateral sides and the costotransverse rings are well formed. The diapophyses are dis-
tinct, but not very pronounced, and the parapophyses are well formed and bear weakly
expressed hypapophyses on their ventromedial sides. On the left lateral side of the centrum, a
0.5 mm foramen is present. The foramen's dorsal border is a lamina that originates from the
centrum and meets the convergence point of the two arcocostal laminae. The length of the lam-
ina is 10 mm before it meets the two arcocostal laminae at its anterior-most end, which are
both 20 mm long. Ventral to the lowest arcocostal lamina is a semi-enclosed pneumatic fora-
men, about 2 mm in diameter. Furthermore, on the medial walls of the costotransverse ring are
four pneumatic foramina whose diameters are about 5 mm each facing: a) anteriorly for those
foramina located on the costotransverse ring's inner surface, and b) anteromedially for those
foramina located on the anterior end of the centrum. On the right side of the vertebra, the obli-
que posterior margin of the arcocostal flange has uneven edges, and there is only one short (2
mm long) arcocostal lamina extending from the diapophysis. Within the inner surface of the
costotransverse ring there are two pneumatic foramina: one (1 mm) on the central surface of
the ring and one (5 mm) on the upper medial surface of the ring, directed posteriorly within
the transverse process. The lamina emerging from the arcocostal lamina extends and stops at
the centre of the centrum (and always has a posterodorsal inclination). Exactly below the end
of this lamina lies a 0.5 mm diameter foramen, directed anteriorly within the centrum. Two
laminae are present along the lateral surface of the centrum, directed obliquely posterodorsally,
which are approximately 20 mm long. On the posterior-most margin of the dorsal side of the
right prezygapophysis is a 3 mm shallow fossa. Its lateral-most margin is part of a 15 mm long
lamina that connects the prezygapophysis with the upper lateral surface of the neural arch at
the base of the neural spine. The neural spine is flat on its lateral sides and the posterior excava-
tion of the spinal fossa is deeper and narrower than the anterior excavation. Furthermore, two
mildly expressed lamina-like ridges extend along the ventral side of the centrum. These are 30
mm long and converge midway until they reach the centre of the centrum.

CV7 (BRSMG Ag1174.5; length: 7.5 cm, height: 3 cm, width: 3 cm) has the same features as
the previous vertebrae. There is a pneumatic foramen, 3 mm, on the left central lamina. Anteri-
orly, the central lamina reaches the arcocostal lamina. On the right side, there are no pneumatic
foramina. On the upper medial surface of the costotransverse ring there are two pneumatic
foramina (4 mm each) dorsally directed towards the transverse process and prezygapophysis.
Another short (5 mm) arcocostal lamina emerges from the broad diapophysis. As a result, shal-
low canals are formed between these arcocostal laminae.

CV8 (BRSMG Ag1174.6; length: 7 cm, height: 3 cm, width: 3 cm) has all basic landmarks
present. The prezygapophyses bear ridges along their dorsal surfaces. On the right lateral side
of the neural spine, near its dorsal-most apex is a 3 mm pneumatic foramen with a medially
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directed opening that is narrow and situated parallel to the spinal margin. The passage commu-
nicates with both the anterior and posterior spinal fossae. On the same side there is a fossa
(possibly enclosing a foramen) of 2 mm on the anterior part of the centrum, just anterior to the
opening of the costotransverse ring. The fossa is obliquely directed anteroposteriorly, and a
part of its lower margin contacts a lamina that originates from this point and extends posteri-
orly along the right lateral side of the centrum, stopping 15 mm from the condyle. The dorsal-
most arcocostal lamina is 30 mm long. It extends from the diapophysis to the centrum-neural
arch border. The lowermost lamina is 15 mm long and, as seen in some of the previous cervical
vertebrae, it originates as part of the posterior edge of the arcocostal flange and continues
obliquely posterodorsally until it converges with the upper arcocostal lamina. As in the other
cervical vertebrae, there are foramina on the inner walls of the costotransverse rings (Fig 1C);
one of them lies on the posterior end of the inner wall of the parapophysis. The foramen is
anteriorly directed inside the parapophysis and is 3 mm in diameter. On the left costotrans-
verse ring is a 3 mm pneumatic foramen on the anterior-most side of the centrum, within the
ring. In addition, on the left side there are three arcocostal laminae in almost parallel forma-
tion, with a foramen (1 mm) on the ventral-most bony shaft, formed between the two lower
arcocostal laminae. Also, anterior to the left costotransverse ring, on the proximal-most side
towards the condyle, there are two foramina, each 0.5 mm, which are posteriorly directed
inside the centrum. Their margins are poorly defined. On the left hypapophysis there are two
foramina, both 1 mm, which are connected by a septum. They are aligned along the anterior
facet of the hypapophysis. In addition, four small foramina are present along the posterior
facet of the hypapophysis, each 0.5 mm in diameter, and located just ventromedial to the rib.

CV9 (BRSMG Ag1174.7; length: 7.3 cm, height: 3.5 cm, width: 3.4 cm) has all basic land-
marks and is mediolaterally compressed. The neurocentral suture is apparent and closed (Fig
1D). On the left side there is a pneumatic foramen (3 mm) directed anteromedially within the
centrum. The foramen's margins are sharp and well defined. A pneumatic foramen (2 mm)
penetrates the inner wall on the upper side of the left costotransverse ring. In addition, a pneu-
matic foramen invades the posterior lateral surface of the centrum, as well as the inner ventral
surface of the costotransverse ring. These foramina range from 2–4 mm in diameter. There are
five foramina in the left ring and one foramen in the right ring. Those pneumatic foramina
located in the left ring form an interconnected septated cluster. There is also a pneumatic fora-
men inside the vertebral foramen on the inner ventral surface. The foramen is about 3 mm in
diameter, narrow, and directed ventrally inside the centrum.

CV10 (BRSMG Ag1174.8; length: 7.7 cm, height: 3.5 cm, width: 3 cm) retains all of the basic
characteristics of the aforementioned vertebrae. On the left side, a pneumatic foramen (3 mm)
invades the centrum and its dorsal margin is bordered from the arcocostal lamina that extends
along the centrum. Three arcocostal laminae on the arcocostal ring's exterior surface converge
into one lamina. They are 15 mm, 20 mm, and 25 mm long, respectively. On the right side, a
smaller pneumatic foramen penetrates the centrum (2 mm). In addition, two arcocostal lami-
nae converge at a point just before they meet this central pneumatic foramen. From each poste-
rior end of the hypapophyses extends a 15 mm long lamina along the ventrolateral side of the
centrum. This central lamina begins from the anterior-most section of the centrum, in the
shaft between the parapophyses, and extends for 30 mm until it bifurcates 20 mm before the
posterior-most end of the cotyle. The two laminae follow the lateral and distal margins of the
cotyle. Pneumatic foramina are also present in the inner dorsal, medial, and ventral walls of the
costotransverse ring. In the left ring, there are one ventral, two lateral, and three dorsal pneu-
matic foramina, all having an anterior invasive direction, ranging from 1–3 mm. In the right
costotransverse ring, there are one ventral, one dorsal and two lateral pneumatic foramina, all
of 0.5 mm. On each hypapophysis, there is a pair of septated pneumatic foramina that are each
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2 mm directed dorsolaterally within the hypapophyses. One more pneumatic foramen lies on
the posterior-most margin of the left postzygapophysis. It is 1 mm wide and anteriorly directed
inside the postzygapophysis. All mediolaterally compressed and, therefore, elongated cervical
vertebrae bear well-formed ribs that reach up to 40 mm in length and that are directed posteri-
orly and slightly laterally (Fig 1E).

CV11 (BRSMG Ag1174.9; length: 7.5 cm, height: 3.5 cm, width: 3.4 cm) has no pneumatic
foramina on the left lateral side, but there is one foramen (0.5 mm on the right side that has a
prominent anterior margin. The foramen is deep and directed anteriorly. Dorsal to this, lies the
posterior end of the centroarcocostal (also known as centrodiapophyseal) lamina. There are
pneumatic foramina in the inner dorsal wall of the costotransverse rings (2–3 mm). More spe-
cifically, there are four pneumatic foramina (each 2 mm) aligned in an oblique row on the ven-
trolateral surface of the right ring's inner wall, directed medially-anteromedially. The
hypapophyses are slightly damaged, revealing septated, camellate trabeculae (an aerated net-
work created by air sac diverticula) within the vertebra. On the left side, three arcocostal lami-
nae exist, being 17 mm, 25 mm, and 30 mm long, respectively. They do not converge, but there
is a depression between the lower two laminae, forming a recessed shaft between them (a char-
acteristic that is variably expressed in cervical vertebrae). On the right costotransverse ring
there are two laminae with a deep shaft between them. They are parallel to each other and ter-
minate on the posterior side of the arcocostal flange; the ventral-most lamina shifts from poste-
rior to posterodorsal direction until it meets the upper lamina. The postzygapophyses are
broad and dorsoventrally flattened. In addition, the centrohypapophyseal laminae (chpl) are
present as well. Another attribute that starts to be more expressed from this vertebra onwards
is that the neural spine is mediolaterally flat but tall (dorsally elongated), which stands in con-
trast to the previous vertebrae.

CV12 (BRSMG Ag1174.10; length: 7.5 cm, height: 4 cm, width: 3.5 cm) bears all basic land-
marks and its pre- and postzygapophyses are dorsoventrally flat (Fig 1F). The left side of the
vertebra has no pneumatic foramina, and the lateral surface of the costotransverse ring shows
three laminae (20 mm, 25 mm, and 25 mm long, respectively). These three laminae unite at the
middle of the centrum. There is a 20 mm long lamina exactly below the centrum, directed
obliquely anteroposteriorly. On the ventral side, there are two foramina on the anterior-most
end of the centrum directly beneath the condyle. These foramina are aligned along the horizon-
tal axis of the vertebra and are 1 mm and 2 mm, respectively. The right lateral side of the cen-
trum does not bear foramina. On the inner ventral surface of the vertebral foramen is a
foramen (3 mm) that penetrates the bone in a ventral direction. On the left inner wall of the
vertebral foramen, two foramina (1 mm and 2 mm) penetrate the bone in an anterolateral
direction. Inside the left costotransverse ring, six pneumatic foramina cover the inner ventro-
lateral surface, ranging from 1–4 mm in size, which are directed anteriorly within the bone.
Two of them merge, forming a small fossa leading to further network-like cavities within. In
addition, a dorsal pneumatic foramen penetrates the transverse process. The right costotrans-
verse ring houses a dorsal foramen penetrating the bone anterolaterally and a lateral (1 mm)
foramen on the central wall penetrating it medially; three more foramina penetrate the inner
wall of the parapophysis being 1 mm, 2 mm, and 2 mm, respectively. There is one more fora-
men (2 mm) on the inner wall of the costotransverse ring. No laminae appear to exist within
the rings. The vertebral foramen bears shallow fossae (each 3 mm) on the right lateral wall. The
ventral surface of the centrum possesses laminae extending along its anteroposterior plane.
Finally, the diapophyses of this vertebra are more strongly expressed with rugose surfaces; they
are triangular in shape and extend posteriorly with the arcocostal laminae aligned in parallel
with the distal ends of the diapophyses, thus forming a greater triangular area where they all
meet on the central suture.
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CV13 (BRSMG Ag1174.11; length: 8 cm, height: 4.3 cm, width: 4 cm) has all previous fea-
tures and basic landmarks, including the parallel arcocostal laminae. There is a deep pneumatic
foramen on the dorsal inner wall of the vertebral foramen that is covered by a fold in its ante-
rior margin. The foramen is 3 mm in diameter, and 10 mm anterior to this is another foramen
(15 mm) that communicates internally with the previous one. The posterior-most of the two
foramina is directed anteriorly within the bone, whereas the anterior-most penetrates the bone
in a dorsal direction. Further along the vertebral foramen, on its inner lateral side, are five
foramina (each 1 mm in diameter), and on the anterior and ventral inner walls are three foram-
ina (each 1 mm) that penetrate the centrum. A 3 mm long shaft depresses the middle of the
cotyle. On the right costotransverse ring, facing it anteriorly, a 5 mm wide pneumatic foramen
penetrates the transverse process deeply in a posterior direction. On the ventral inner wall of
this ring, two foramina (each 3 mm) are present and are directed anteroventrally. A foramen (2
mm wide) invades the inner lateral wall of the right costotransverse ring in a laterodorsal direc-
tion. In the left ring is a 10 mm wide pneumatic foramen exactly ventral to the posterior mar-
gin, penetrating the transverse process vertically. There is also a 2 mm foramen on the lateral
wall of the centrum, two foramina (each 1 mm wide) on the inner wall of the ring, and three
foramina (each 1–2 mm) penetrating the posterior aspect of the left parapophysis. On the right
side, at the far posterior end of the centrum lies a 2 mm wide pneumatic foramen that penetrat-
ing medially on the lateral side, just anterior to the lower margin of the cotyle. No lamination is
associated with the foramen.

CV14 (BRSMG Ag1174.12; length: 8 cm, height: 4.5 cm, width: 4.5 cm) has a shorter and
anteroposteriorly inclined neural spine, with its anterior margin being taller than its posterior
one. The pre- and postzygapophyses are dorsoventrally compressed. On the anterolateral side
of the left diapophysis there is a fossa (3 mm in depth) leading to a foramen (1 mm). There are
four main arcocostal laminae on the left ring. The first two (dorsal-most) are parallel to each
other and their lengths are 25 mm each. The two ventral-most laminae are oblique, non-paral-
lel, and converge at the end of the ring's flange. Their lengths are 10 mm and 15 mm, respec-
tively. In addition, on the same side there are three small foramina (each 1 mm in diameter) on
the inner dorsal wall of the left ring, penetrating the transverse process. On the posterior and
posteroventral facets of the left parapophysis inner wall there are multiple clusters of foramina
ranging from 1–3 mm in width, which seem to communicate with each other within the bone.
On the right ring, there are multiple small foramina (each 1 mm wide) on the posterior and
ventral inner sides. On the right lateral side at the convergence of the one (and only) arcocostal
lamina with the posterior end of the costotransverse flange there is a small foramen (1 mm
diameter) that is directed posteriorly. The lateral and ventral facets of the vertebral foramen
have each a foramen. The lateral foramen is 1 mm wide and the ventral foramen is 2 mm in
width. The lateral foramen invades the bone in a posteromedial direction, while the ventral
foramen invades it in a dorsal direction. On the posterior-most end of the dorsal facet of the
neural canal, at the middle of the dorsal margin of the condyle, lies a circular fossa (3 mm) that
leads into a foramen. The foramen is positioned within the fossa's inner left lateral side. Lastly,
the hypapophyses' medial curvature is greater than in the previous vertebrae.

CV15 (BRSMG Ag1174.13; length: 8 cm, height: 4.5 cm, width: 4.5 cm) has an obliquely ele-
vated spine (see CV14). On the left side, three arcocostal laminae (20 mm, 25 mm, and 20 mm
long, respectively) lie on the costotransverse ring's lateral surface. The first two are parallel
while the third is dorsally directed. There is a foramen (1 mm wide) on the lateral side of the
vertebra, located posterior to the left parapophysis. The foramen's ventral margin is a ridge
that extends posteriorly along the cervical rib. Ventral to and posterior to the transverse pro-
cess is an anteroposteriorly long and narrow pneumatic foramen (10 mm long). It is slightly
oblique and deep with a mediodorsal direction. No lamina is associated with the foramen.
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From the middle of the dorsal and ventral margins of this foramen, bony septa-like extensions
emerge and reach each other from their opposite sides. Multiple foramina are present on the
dorsolateral inner surface of the left costotransverse ring. They range from 2–3 mm in width
and, within these foramina, deeper excavations and foramina are revealed that aerate the bone
internally. In addition, similar cluster-like networks of four foramina (2–3 mm in diameter)
are present on the posteroventral surface of the same ring. On the right costotransverse ring, a
narrow and oblique pneumatic foramen (10 mm long) penetrates deep into the transverse pro-
cess. Further along the dorsal surface are around nine foramina ranging from 1–3 mm that aer-
ate the transverse process in a dorsolateral direction. On the ventral wall of the ring,
posteroventral to the right parapophysis are three pneumatic foramina (1–2 mm in width)
leading to further pneumatization within their cavities. Inside the ring, on the ventral inner
wall there is a 3 mm wide foramen backed by a 3 mm wide fossa. The foramina within the ring
are located on a roughened surface. On the ventral inner wall of the vertebral foramen are two
pneumatic foramina lying beside each other (2 mm and 3 mm). No laminations are associated
with the latter foramina. On the posterior and lateral sides of the centrum, just before the pos-
terior margin of the cotyle, is a 1 mm wide foramen. On the lateral walls of the spinal process,
there are multiple fossae (2–3 mm) and a foramen (1 mm wide) positioned on the anterior and
posterior ends. They invade the spine and are associated with the left spinopostzygapophyseal
lamina (spol). Finally, there is a 1 mm wide foramen on the anterior recess of the spine, which
seems to invade it.

CV16 (BRSMG Ag1174.14; length: 8 cm, height: 5.5 cm, width: 5.5 cm) has well-defined
landmarks and is characterised by reduced rib length (15 mm). The vertebra possesses multiple
foramina (sizes range from 1–4 mm) within each ring, internally connected into a complex net-
work. This network forms a rough surface that results from numerous septated and intercon-
necting foramina. They cover the dorsal and lateral inner walls of the costotransverse rings. On
the ventral surface of each parapophyses several foramina (measuring up to 10 mm each) lie
within fossae, and these complexes are anteroposteriorly directed within the parapophyses.
Their margins are prominent. The postzygapophyses and the transverse processes are deeply
aerated further within the centrum. On the left lateral side, ventral to the two arcocostal lami-
nae, lies a 5 mm wide foramen that is directed posteromedially and has well defined margins.
Posterior to the posterior end of the arcocostal flange are two pneumatic foramina (each 2 mm
wide) that are directed medially. On the medial surface of the right spinal wall is a 0.5 mm fora-
men with its dorsal margin formed by the right spinopostzygapophyseal lamina (spol). Fur-
thermore, on the right lateral side, there is a pneumatic foramen (1 mm wide) at the
convergence of the arcocostal laminae that is directed medially within the centrum. A camer-
ated opening is present ventral to the right transverse process, forms a narrow chasm (directed
dorsomedially) and extends posteroventrally for 10 mm. No laminae are associated with this
formation. On the ventral inner side of the costotransverse ring, there are numerous foramina
(each 0.5 mm in width) that are directed ventrally-anteroventrally within the parapophyses.
On the posterior-most margin of the centrum, before the lateral right margin of the cotyle,
there are two shallow fossae that are each 2 mm. The arcocostal laminae on each ring are paral-
lel to each other and measure 20 mm and 15 mm long, respectively. On the ventral side of the
vertebral foramen are three foramina (3 mm, 2 mm, and 1 mm in width, respectively) each fol-
lowing an anteroposterior direction. The central lamina along the ventral side is not present on
this vertebra. Centrohypapophyseal laminae (chpl) are also present, and it is evident that the
hypapophyses are also internally aerated.

CV17 (BRSMG Ag1174.15; length: 5.5 cm, height: 6 cm, width: 6 cm) is expanded mediolat-
erally, but the posterior part of the vertebra is missing. The cut surface reveals the internal tra-
beculated network. The estimated total original length of the vertebra is approximately 7–9 cm.
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Despite the missing posterior part, this vertebra exhibits well-defined landmarks. The neural
spine is tall and the distance between the prezygapophyses is broad. The hypapophyses are
very well formed, rather short and broad, and oriented anteroventrally and laterally. On the
ventral side between the chpl are two foramina, which are 1 mm and 2 mm, and are directed
posteromedially. In addition, mediolateral to the left chpl is a 3 mm wide foramen that is
directed dorsally within the centrum. The foramen's margins form a lamina-like network that
bifurcates around the foramen and then reunites further posteriorly along the centrum. A fossa
(2 mm wide) lies on the midline of the condyle ventral surface and leads to two laterally
directed foramina (each 1 mm) that are connected via a septum. The left lateral side shows a
ventromedially directed pneumatic foramen (3 mm) that is located posterior to the costotrans-
verse flange. There is a deep opening ventral to the transverse process, which is 5 mm in diame-
ter, 15 mm long, and aerates dorsally-posterodorsally the centrum and transverse process. As
always, the diapophyses bear two arcocostal laminae each, whose lengths are 20 mm and 10
mm, respectively. The lateral margin of the left prezygapophysis has a 1 mm wide foramen
directed obliquely ventromedially. On the right side, exactly posterior to the conjunction of the
arcocostal laminae on the centrum, is a cluster of foramina (20 mm across) that reveals further
inner camellations and lead into smaller fossae and foramina. These are connected ventrally
via septa with another narrow foramen (20 mm long), which is obliquely directed and has fur-
ther camellations that lead to posteroventral inner aerations of the centrum. A long, narrow
foramen beneath the transverse process is also present in this vertebra. It is 20 mm long, has
well defined expressed dorsal margin, and extends deeply in a dorsal direction within the trans-
verse process. On the ventral surface of the vertebral foramen lie numerous pneumatic foram-
ina ranging in width from 1–3 mm. Finally, on the ventromedial side of the left parapophysis
lies a 2 mm wide foramen, which is dorsally directed, that reveals the internal trabeculated net-
work. All vertebrae except CV16 and CV17 possess a faint lamina, identified as the crista ven-
tralis, extending along the middle ventral side of the centrum.

The mounted skeleton of an adult Struthio camelus individual (BRSMG Af962) was also
studied, but could only be examined from its right side. The neural arches are firmly attached
to the centra, with only minor fissures apparent. The locality for the specimen is unknown, but
the skeleton is in excellent condition; all of the bones are in place, except for the second sternal
rib on the right side and the fifth sternal rib on the left side, which are missing. Its dimensions
are 2.2 m in height and 1.3 m in length. As viewed from the right, CV2 (axis) and CV13–18
bear external evidence of pneumaticity. CV2 has a pneumatic foramen ventral to the arcocostal
lamina on the costotransverse ring exterior surface. This lamina extends for about 20 mm in a
posteroventral direction. The cervical ribs are well formed, extend posteriorly and are attached
to the posterior ends of the diapophyses; from CV3 onward the ribs become increasingly elon-
gated. The same observation applies to the neural spines. Posterior to every neural spine is a
deep and narrow excavation that is directed anteriorly within the spine, forming a triangular
3D shape with obliquolateral sides (the sides are directed medially). The dorsal prominences of
the margins resemble laminae-like ridges. The spinopostzygapophyseal laminae (spol) are
present. The excavations at the back of the neural spine seem to be aerated because they con-
tain pneumatic foramina.

On CV13, a foramen is positioned ventromedially on the diapophysis. The foramen is
directed slightly posteriorly and it is approximately 2–3 mm in diameter. Next to that foramen
and anterior to the hypapophysis there is a larger hole (possibly a break) that reveals two, 1–2
mm wide each, pneumatic foramina, showing that the cervical vertebrae were internally pneu-
matized by diverticula. Furthermore, four arcocostal laminae extend posteriorly from the dia-
pophyses. The diapophyses curve ventromedially. The costotransverse rings are well formed
and the transverse processes are prominently expressed along the length of the vertebra. The
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ridge-like arcocostal laminae on the lateral sides appear to show depressions on their anterior-
most margins. There is also an opening (1 mm wide) on the anterodorsal facet of the right pre-
zygapophyses, a trait that can possibly be considered as another indication of air sac invasion.
On CV14, there is a foramen (2 mm wide) ventral to the ventralmost arcocostal lamina. Anteri-
orly, a fossa (5 mm long) extends dorsally along the anterior side of the neural spine. The fossa
is 2 mm deep but it does not communicate with the postspinal fossa. Laminations do not
extend from its anterior margins. On CV17, there are three pneumatic foramina (10 mm in
diameter and 10–20 mm deep) on the lateral side of the centrum. On the dorsal surfaces of
CV14–18, there are two shallow fossae, one on each side originating from the prezygapophysis.
They are approximately 2–3 mm deep, and the fossae margins are laminae that connect (a) the
spine with the prezygapophyses and (b) the postzygapophyses with the prezygapophyses. A
general observation was that the cervical vertebrae are not as pneumatic as the dorsal vertebrae
with the latter possessing many more foramina and fossae than the cervicals.

Summarized observations
Three main skeletal features (foramina, fossae, and laminae) associated with PSP were recorded
in the avian taxa examined.

Vertebral foramina. In summary, foramina created by the penetration of diverticula into
the cortical bone ranged in diameter from 0.5–10 mm. Foramina pierced the bones in a variety
of positions. The foramina were found both singly and in clusters with numbers ranging from
2–9 with the openings interconnected by septa. The margins were frequently associated with
vertebral laminae or the foramina were positioned within a fossa.

Positions in which foramina were identified include:

i) The dorsal surface of the transverse processes (present in that location only in rhea and
ducks).

ii) The lateral or ventral surface of the centrum, termed the foramen vertebrale laterale or
foramen vertebralis ventralis, respectively. Such foramina were present in all examined taxa,
except the grebe and loons.

iii) Within the bounding wall of the vertebral foramen (their characteristics fall under pneu-
matic and not neural or vascular specifications), positioned either dorsally, reaching into
the neural arch, or ventrally, reaching into the centrum. Those foramina reaching into the
centrum sometimes communicated with the foramen vertebralis ventralis. Ostrich (Figs 1
and 2) and rhea vertebrae possessed these features.

iv) Anteroventral or posteroventral to the transverse process, usually forming small clusters
of foramina. These features were present in all of the taxa examined.

v) On either side of the neural spine. Such foramina were present in most birds examined
except loons, the grebe, penguins, tinamous, and kiwis.

vi) Within the posterior depression of the neural canal, being present either singly or in
clusters (found in all birds examined).

vii) On the inner wall of the costotransverse ring (termed the foramen transversorium
within the ansa costotransversaria) as single, paired or clustered foramina (found in all taxa
examined).

viii) Near to the lamina arcocostalis. In all cases the foramen margins were formed by verte-
bral lamina(e) (found on all the large ratites, i.e., ostrich, rhea, moa, and cassowary).
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ix) On the neurocentral suture line. This condition occurs rarely in the ostrich and rhea.

x) At the anterior and posterior ends of the centrodiapophyseal laminae (found in all ratites).

xi) On the crista ventralis (hypapophysis) in ratites and penguins.

xii) Near or adjacent to the centrohypapophyseal lamina in ratites.

xiii) On the ventral surface of the corpus between the processus costarius (parapophysis) in
the large ratites.

xiv) On the lateral or ventral sides of the condyle (facies terminalis cranialis) in the ratites
and ducks.

xv) On the ventral surface or the posterior rim of the cotyle (facies terminalis caudalis) in
the large ratites.

xvi) On the surface of either the prezygapophyses and/or postzygapophyses in the large
ratites.

xvii) Between the neural arch and the postzygapophyses in the large ratites.

Observations (xiv) and (xv) demonstrate that pneumatic foramina are located just anterior to
the foramen intervertebrale. This occurred more often on the thoracic and synsacral vertebrae.

Fig 2. Schematic representation of air sac complex with its associatedmuscles. Right lateral view of a Struthio camelus (ostrich) mid-cervical vertebra,
showing a local fraction of the air sac diverticular complex and the muscle groups (red) associated with it and the vertebra. The black lines represent the
various borders of the diverticular membrane extensions; the purple shows the air sac's lateral vertebral diverticulum along the corpus; the light blue depicts
the membranes that extend from the diverticulum, anchoring on the corpus and invading the brown foramen pneumaticum. Abbreviations: fp foramen
pneumaticum; MOSM. obliquospinalis; MOTM. obliquotransversalis; MISM. interspinalis; MLCVM. longus colli ventralis; MITM. intertransversalis.

doi:10.1371/journal.pone.0143834.g002
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Vertebral fossae. Fossae are shallow or deep depressions on the vertebrae that do not
enter the bone cortex. In the taxa examined, they range from 5–30 mm in width and depth.
Large fossae are present on the synsacral vertebrae of the large ratites. Usually, fossae house
foramina and/or are adjacent to vertebral laminae, or are defined by the development of promi-
nent laminae. The margins of the fossae vary in prominence, from shallow changes in the slope
of the vertebral surface, to gently curved ridges, through to the development of distinct, sheet-
like vertebral laminae. As observed by the dissection of the ostrich neck, the margins of these
fossae serve as muscular and/or air sac membrane attachments (described in more detail
below).

Observations showed that fossae were located:

i) On the lateral sides of the corpus in all of the birds examined, except the grebes.

ii) Ventral to the processus transversus in all of the birds examined.

iii) Between two arcocostal laminae, or between one such lamina and the arcocostal poste-
rior flange in large ratites.

iv) On either side of the arcus vertebrae (found only in the ostrich, rhea, emu, and
cassowary).

v) Between the spinodiapophyseal and the prezygodiapophyseal laminae in the ostrich,
rhea, and emu.

vi) On the lateral surfaces of the processus spinosus in all of the birds examined.

vii) Anterior to the processus transversus at the point where it connects with the centrum
(found in all birds examined, except the grebe and the loons).

In addition, relatively large fossae were found to encompass smaller fossae within them.
This usually occurs around the junction of the transverse processes with the corpus, within the
spinal fossa(e), or within the inner walls of the costotransverse ring.

Summary of pneumatic features. We identify seven pneumatic phenomena in birds
(Tables 2–5, S1 Table and S3–S13 Tables). Apart from the three expected pneumatic features
(pneumatic foramina, fossae, and laminae) that were commonly present in most AUs of the
vertebral column in most birds studied, four more were recorded in the form of combinatory
elements. These were: (i) pneumatic foramina associated with laminae, (ii) fossae associated
with laminae ('laminated fossae'), (iii) fossae that incorporated foramina within them, and (iv)
septated foramina. The latter characteristic appeared as a cluster of foramina interconnected
by thin sheaths of bone. These sheaths are not to be confused with laminae. These seven fea-
tures were found in the various aforementioned positions (see section 'Vertebral fossae',
above). Presence of a pneumatic element in even one vertebra was sufficient to score it as pres-
ent (+) for the entire AU.

In summary (Tables 2–5 and S3–S7 Tables), the large ratites (ostrich, rhea, emu, cassowary)
possess numerous pneumatic foramina, fossae, and vertebral laminae and also exhibit many
complex combinations of these characters (e.g., presence of sub-fossae, setting of foramina
within fossae, and close associations of laminae and foramina/fossae). All of these features are
present, but developed less strongly, in the moa, and are also present, though weakly expressed,
in the kiwis and tinamous. All features are most frequently present in the cervical and thoracic
vertebrae, whereas the synsacral and caudal vertebrae exhibit reductions in the expression of
the more complex character combinations, but the three basic features (foramina, fossae, and
laminae) are retained.
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Although kiwis and penguins are generally considered apneumatic, it appears that this is
not strictly the case. Kiwis possess some pneumatic foramina, as well as fossae, laminae, and
'laminated fossae' on their cervical vertebrae (Table 2 and S8 Table), while their thoracic and
synsacral vertebrae exhibit foramina (it is not possible to ascertain whether they are vascular,
neural, or pneumatic; dissection is required). Another notable observation is the presence of
the three basic pneumatic characters plus one complex character in the cervical column of all
the examined penguins (Tables 2–5 and S10 Table) even though they are deep divers and have
a robustly constructed skeleton. The expression of these features is limited and is not present in
all vertebrae. The moa does not exhibit all of the vertebral characters considered, but it does
possess many of them (see Tables 2–5 and S4 Table), and damaged cervical vertebrae reveal
extensive trabeculae formed by the bony septa that subdivide camellated bone due to aeration
from an invading pneumatic diverticulum. The vertebral characters of poor flyers (loons,
grebe, and tinamous) are similar in many respects to those of the non-flying penguins and
kiwi. These taxa are also similar in terms of body size.

Foramina, fossae, and laminae are most frequently present in the areas where the transverse
processes meet the centrum, in the spinal canal and adjacent areas, and within the inner sur-
faces of the costotransverse ring. Strong associations between laminae and either foramina or
fossae are found most frequently among large ratites, especially within the cervical and thoracic
regions of the vertebral column. The presence of septated foramina is variable and does not
appear to be related to either the size or locomotor mode of the birds. Rare but noteworthy
occurrences of foramina, fossae, and laminae are found on the epipophyses (tuberculum dor-
sale), prezygapophyses and postzygapophyses, hypapophyses (crista ventralis), parapophyses
(processus costarius), and on the ventral surfaces of the cervical and thoracic vertebrae. These
rare occurrences are more often observed in the cervical and (less frequently) thoracic verte-
brae of the ostrich, rhea, emu, kiwi, and tinamou. The vertebral laminae observed most fre-
quently in association with pneumatic foramina are the prezygodiapophyseal (prdl),
prezygoparapophyseal (prpl), arcocostal, centrohypapophyseal (chpl), spinopostzygapophy-
seal (spol), and centrodiapophyseal (cdpl) laminae [54]. Fossae are usually associated with the
spinoprezygapophyseal (sprl), spinopostzygapophyseal, postzygodiapophyseal (podl), and
postspinal laminae.

Association of soft tissues and vertebral structures in the ostrich neck
Associations between the cervical air sacs (saccus cervicales), their diverticula (diverticula ver-
tebralia; [65]), cervical muscles, and osteological features (sites of air sac/muscular attach-
ments, pneumatic foramina, fossae, and laminae) were examined during the ostrich dissection.
Ridge-like bony rugosities are present on the exterior surfaces of the costotransverse process,
the costotransverse ring, the arcocostal surface, the anterior surfaces of the prezygapophyses,
diapophyses, and parapophyses, as well as on the dorsoposterior surface of the postzygapo-
physes. Four main muscle groups are identified attaching to these rugosities and the surfaces of
the processus spinosus: (a)M. obliquospinalis, (b)M. obliquotransversalis, (c)M. interspinalis,
and (d)M. intertransversalis (Fig 2). TheM. obliquospinalis extends posteriorly and obliquely
from both lateral surfaces of the processus spinosus until it reaches the next vertebra and
anchors itself on the same points. TheM. obliquotransversalis is attached to the corpus lateral
surfaces and extends posteriorly to attach to the processus transversus of the posterior vertebra.
TheM. interspinalis is attached to the dorsal surface of the processus spinosus and extends pos-
teriorly to the next. Finally, theM. intertransversalis extends from one processus transversus to
the next. O'Connor [28] identified and summarized the different diverticular portions of the
air sacs that span along and through the vertebral column and girdle systems of birds. Here in

Pneumatization in the Vertebrae of the Ostrich and Other Birds

PLOS ONE | DOI:10.1371/journal.pone.0143834 December 9, 2015 23 / 39



our study, the main, paired cervical air sac extends along the dorsal side of the cervical column,
measuring about 10 mm in diameter, and its main originating diverticula are approximately 5
mm in diameter. The cervical air sacs extend circumferentially around the cervical vertebrae
via their interconnected diverticula, reaching the ventral side of the column. According to
O'Connor [28], the diverticula extending laterally along the centra and through the vertebrar-
terial canal are the lateral vertebral diverticula (LVDv). Moreover, the shorter and “dorsally
directed outpocketing originating from supramedullary or supravertebral diverticula that
expand within the epaxial musculature” ([28]:1205) are the intermuscular diverticula (IMDv)
and “the longitudinal system variably occupying the extradural space within the vertebral
canal” are the supramedullary diverticula (SMDv) ([28]:1205). Furthermore, the “short, seg-
mental expansions from the SMDv that occupy a position on the dorsal surface of the vertebral
neural arches” are the supravertebral diverticula (SVDv) ([28]:1205) and, finally, “the short,
segmental connections between two or more longitudinal diverticular networks (e.g., between
the LVDv and SMDv)” are called anastomosing diverticula (AnDv) ([28]:1205). The LVDv
(also known as canalis intertransversarius; [26]) extend along the entire length of the neck
(Figs 3B, 3E, 4A and 4B), passing through the foramen transversarium of each vertebra (i.e.,
through the ansa costotransversaria). They extend via membranes that engulf the entire cir-
cumference of each bone's surface including the ribs, i.e., the main air sac diverticula give rise
to membranous extensions that surround the vertebrae.

On the dorsal and ventral sides of the cervical column, the diverticular membranes regroup
and form stiffer tube-like structures that run along the entire column (Figs 3D, 4C and 4D).
The dorsal intermuscular diverticular structures (IMDv) are relatively rigid, while those posi-
tioned ventrally are very flexible. The intermuscular air sac diverticula are attached to the mus-
cle fibers originating from the vertebrae and it is difficult to find a clear separation between the
bone/air sac/muscle complex. The diverticula can be seen to attach to the postzygapophyses in
their posterodorsal portions via sheets of thin connective tissue, while being also attached to
theM. interspinalis andM.obliquospinalis. Nerves and blood vessels are also present alongside
the air sacs and their expanding diverticula. Air sac diverticular membranes from IMDv (Fig
3C) intertwine with theM. obliquotransversalis andM. intertransversalis, connect to the LVDv
that, in turn, extend and cover the facies terminalis caudalis (Fig 4A) and lamina arcocostalis
(Figs 3E and 4B), and extends dorsally to the processus spinosus (Fig 4D). The lateral vertebral
diverticulum is also attached to theM. intertransversalis on the lateral side of the processus
transversus. Posterior to the vertebra, the LVDv is anchored onto the posterolateral margin of
the foramen vertebrale via membranous extensions. A pneumatic foramen is exposed at the
end of the centrodiapophyseal lamina on the arcus vertebrae. The foramen is 2 mm in diameter
and is invaded by the LVDv diverticulum that is attached to the foramen vertebrale (Figs 4A,
4B and 5). This diverticulum also attaches directly to the prezygoparapophyseal lamina.

A thinner membrane originates (AnDv) and extends from this diverticular tissue to the
main vertebral body, covering the corpus and connects to the supramedullary diverticulum
(SMDv) that covers the wall of the foramen vertebrale.

Another pneumatic foramen is present on the inner (medial) and posterior side of the ansa
costotransversaria. The foramen is covered by LVDv extensions that also invade it. The fora-
men is large enough (10 mm) to possess well-expressed bony margins to which the diverticu-
lum is attached via membranous extensions. The foramen extends posteromedially for 10 mm
into the bone. This portion of the air sac diverticulum is connected to theM. intertransversalis
that passes from the ansa costotransversaria. Removing theM. obliquotransversalis from the
anterolateral side of the vertebra reveals the presence of intermuscular diverticular tissue that is
connected to the muscle from beneath. Pneumatic foramina (1 mm in width) are also located
laterally on the main vertebral body and are covered by a thin membranous film originating
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Fig 3. Right lateral view of the ostrich neck with flesh depictions. (A) Anterolateral view of the anterior part of the neck revealing the free end of the
cervical artery; (B) Same for (a) but with the artery extended revealing its associated semi-transparent diverticular membrane that attaches within the muscle
layers; (C) Partially dissected ostrich neck with some of the exterior muscle layers stretched out showing the intertwined air sac membranes; (D) Image
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from nearby diverticular extensions. On the dorsal surface of the vertebrae, the supravertebral
diverticula (SVDv) forms a network of thin membranes clustered within the posterior cavity of
the bifurcated fossa spinalis. Further dissection revealed that the ventral part of the SVDv was
connected to both theM. obliquotransversalis and theM. longus colli ventralis. CV5 exhibits a
2 mm wide pneumatic foramen positioned ventrolaterally on the corpus that is directed medio-
dorsally and anteriorly. The SVDv has a number of extensions there, anchored around the ven-
tral margin of the foramen, continuing with further extensions around the margins of the
foramen that also invade it. Furthermore, on CV4 and CV6, the ventral portion of the lateral
vertebral diverticulum anchors and extends from the ventral side of the facies terminalis cra-
nialis continuing around the anterior edges of the diapophyses and processi costarii. The dorsal
portion of the SVDv on the processus spinosus is covered by theM. obliquospinalis andM.
interspinalis. Further observations from CV7–15 show that theM. obliquotransversalis is cov-
ered externally by a thin air sac diverticular membrane (IMDv) that, in turn, connects that
muscle with theM. intertransversalis as the membrane is uniformly distributed around the ver-
tebra. The cervical muscles are attached to the roughened lateral surfaces of the facies termina-
lis cranialis, facies terminalis caudalis and diapophyses. The air sac diverticula are anchored in
many of the same attachment points and cover the muscles associated with these origins.
Therefore, the muscle-air sac diverticular system lies beneath the subcutaneous muscles. Inner
folds of the ventral air sac system are covered by theM. intertransversalis. The ventral mem-
brane extensions cover internally only a part of theM. longus colli ventralis. In addition, theM.
intertransversalis also expands and attaches ventrally and externally onto the cervical ribs.

The membranous air sac diverticulum, an expansion of the LVDv, which is attached lat-
erally to the corpus does not penetrate the neurocentral suture, but is firmly attached to it. The
air sac diverticulum that extends over the lateral surface of the vertebra anchors for about 15
mm along the bone surface and extends anteriorly and medially below the processus costarius
and posteriorly extends and occupies the ansa costotransversaria, forming a network of diver-
ticula that expands within the interior of this ring and pneumatizes it. The diverticula extend
dorsolaterally from a ventral direction to cover every possible area of the cervicals, thereby
associating air sacs with muscles and osteological landmarks. The membranous diverticular
network is apparent within the ansa costotransversaria and is covered by muscles in almost all
directions. Connections with existing laminations cannot be observed with ease in most of the
cervicals. However, all existing laminae on the ostrich cervical vertebrae serve as points of
anchorage for both muscle and air sac attachments in the same places under the same pattern
described above.

Discussion

Preliminary overview of avian pneumaticity
The results of this research demonstrate not only variable expression of pneumatic features,
but also the relationships between them. Our observations of potential pneumaticity are not
conclusive as there is a considerable amount of variability in the expression of pneumaticity
even among ratites. It is evident that, by analogous comparison, the non-volant ratites such as
rhea, ostrich, emu, cassowary, moa, and kiwi, as well as the semi-volant ratites like tinamous,

exposing the interior surface of the cut-open cervical artery located on the ventral side of the cervical column; (E) Lateral view of a cervical vertebra exposing
the air sac lateral vertebral diverticulum and its transparent extensions invading the foramen pneumaticum positioned dorsally to the lateral vertebral
diverticulum; (F) Posterior view of a cervical vertebra showing a cluster of 3–4 pneumatic foramina within the foramen vertebrale inner ventral wall.
Abbreviations: paa processus articularis caudalis; fs fossa spinalis; fp foramen pneumaticum; LVDv lateral vertebral diverticulum. The scale bar corresponds
to the main cervical column.

doi:10.1371/journal.pone.0143834.g003
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Fig 4. Dorsal view of the dissected ostrich neck with dissection captions. (A) Anterolateral view of a cervical vertebra revealing a foramen
pneumaticum on the corpus and the purple air sac's lateral vertebral diverticulum (LVDv) that extends along the corpus and attaches on the posterior margin
of the facies terminalis caudalis. Note the obliquotransverse muscle (M. obliquotransversalis) anterodorsally to the foramen as well as the transparent air sac
diverticular extensions that attach on the foramen's margin and invade it; (B) Another close-up from another cervical vertebra showing a pneumatic foramen
directly above the air sac diverticulum (LVDv) and below the air sac membrane attachment; (C) Part of the ostrich neck before the removal of the exterior
muscles. Note the transparent air sac membrane that folds beneath the muscle complex. The membrane system is a continuous network that engulfs the
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have more pneumatic skeletal (vertebral and appendicular) elements than the volant ducks, the
non-volant divers (penguins), and the semi-volant and semi-aquatic (loons, grebe) birds
(Tables 1–5 and S1 Table and S3–S13 Tables). The observation of skeletal material sheds some
light and verifies the acquisition of pneumatic foramina by avian taxa that are considered [3–
6,46, 66] to be semi-pneumatic or even completely apneumatic [36] (penguins, loons). Thus,
ducks, kiwis, penguins, loons, and grebes require further study (CT scans, dissections) to
explore their putative pneumatic features. Having taken general measurements (i.e., total
height and total length) from all examined avian specimens (see S2 Table), we find an increase
in both the complexity and occurrence of pneumaticity in ratites as body size increases, an
observation that has also been documented in non-avian theropods [41]. While this study does
not address ratios of body size and Pneumaticity Index among the examined taxa, it does pro-
vide a clear and simple representation of the pneumatic data that can be used as a baseline for
future quantitative studies on vertebral pneumatization (see Tables 2–5 and S1–S13 Tables).

Association of vertebral pneumatic features with air sac diverticula
Vertebral laminae may act as stress/strain absorbers [53,67] and do function as points of
attachment for muscles and other tissues [18,37,38,54,67]. Our observations on ostrich necks
indicate that the vertebral laminae are more extensively expressed when adjacent to a pneu-
matic foramen, suggesting that laminae also act as important anchorage points for the air sac
diverticula to attach to the bone before they invade it. The length of the laminae varies accord-
ing to the size of the vertebra. It is possible that the laminae serve as structural supports for the
vertebra, compensating for the loss of cortical and cancellous bone due to the formation of
foramina and fossae (e.g., [18,28,38]).

Our observations on the dissected ostrich neck and the avian osteological specimens indi-
cate diverse expressions of pneumatization and reveal a set of complex associations between air
sac diverticula, osteological pneumatic traits, and muscles. The air sac diverticular membranes
are often attached to the lateral surface of the centrum, sometimes directly on the neurocentral
suture (the individual was subadult), and, as aforementioned, in many cases, they are attached
to the laminae. Penetration was not clearly visible, but the membranes firmly adhered to the
suture. This observation supports those of previous studies (e.g., [9,13,27,28,33]) that, on a
microscopic level, the cells of the air sac diverticula 'push through' the osteocytes during post-
hatching ontogeny, invading and aerating the bone internally. Furthermore, the motor nerves
were intertwined with the muscles that were, in turn, associated with the air sac membranes.
This may indicate that muscle fibres responsible for neck flexion and constriction contribute to
the expansion and compression of any associated air sac diverticula. If this is true, then the
expansion and compression of the pneumatic diverticula would not only be mediated centrally
through general pulmonary ventilatory activity, but also by local mechanical influences from
the associated musculature. However, this concept has not been tested experimentally, nor has
the significance of such potential functions been addressed.

Osseous rugosities (Fig 1D) on the arcocostal surface in the large ratites provide attach-
ments for the intertransverse and obliquotransverse muscles along the vertebrae, and serve as
attachment points for the air sac diverticula (e.g., LVDv, SVDv) and their membranous exten-
sions. A point of clarification here is that, in general, the air sac diverticula were quite flexible
but we observed that the diverticular extensions and membranes that expand from the main

bone and is covered by the muscular system; (D) Right posterolateral view of the last cervical vertebra revealing the air sac membrane network anchoring
laterally to the muscular system and medially to the corpus. Scale bar corresponds to the main cervical column. Abbreviations: c corpus; fp foramen
pneumaticum; faa facies articularis caudalis; LVDv lateral vertebral diverticulum.

doi:10.1371/journal.pone.0143834.g004
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Fig 5. Triple schematic of ostrich vertebra-air sac-flesh tissue system. (A) Depiction of a semi-transparent layer of the actual close-up of the air sac
diverticulum system with its surrounding tissue placed on top of the cervical vertebra; (B)Magnified air sac diverticulum and its membranous extensions. The
black lines indicate the various folds and borders of the air sac diverticulum and its membranes as they expand on the bone; (C)Only the bony tissue with the
schematic representation of the air sac diverticulum/membrane system without the surrounding flesh tissue. Same colour codes apply as described in Fig 2.
Please note that the air sac is not inflated and thus intraspecific variation is highly probable.

doi:10.1371/journal.pone.0143834.g005
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diverticula and become attached to the osseous rugosities and laminae become more rigid
before invading the bone via foramina. The rough-textured protrusions lie between the centro-
diapophyseal and arcocostal laminae and often bear pneumatic foramina, thus verifying during
the ostrich dissection that both the muscles and membranous air sac diverticula utilize the
same anchorage points. Based on our observations of the locations of pneumatic foramina on
the cervical vertebrae, we verify that the air sac diverticula expand on the bone's surface in
nearly every direction and penetrate the bone by attaching themselves to the various laminae
and fossae/foramina described in this study, corroborating previous work by O'Connor
[28,36]. In addition, the camellate network-like structures in the entrance of the transverse
foramina, the spinal posterior fossa, and the inner wall of the costotransverse ring, indicate that
the thin septa (and the septated foramina) serve as firm points of adhesion for the diverticula
before they invade the bone. This leads to the logical conclusion that, during the early stages of
avian ontogeny, several weeks after hatching [34,35], the air sacs expand their membranous
extensions forming the diverticula, which, in turn, seek stable anchorage on the bone's laminae.
For example, ostrich and emu cervical vertebrae often bear more than one arcocostal lamina.
They can be described as laterally expressed, longitudinal ridge formations, often having a
pneumatic foramen between or on them. Such a feature was expressed to a limited extent,
when present, in smaller ratites (i.e., kiwi and tinamou) and was absent in non-ratites (duck,
loon, grebe, and penguin). This evidence supports weakly a possible relationship between body
size and the degree of PSP.

As noted earlier, pneumatic foramina, with and without septations, were present on the ver-
tebrae and/or appendicular elements of birds with reduced pneumaticity, such as kiwi, pen-
guin, grebe, and loon (Tables 1–5, S1 and S3–S13 Tables). Kiwis are ratites that are strictly
non-diving and obligatory cursorial birds, as they have entirely lost the ability to fly. Penguins
are marine foragers that need to be able to dive deep without the buoyancy constraints imposed
by water. According to Meister's study [66], the long bones of penguins (mainly femora) are
stiff and very dense, but not wider in diameter than in other birds of similar size. They have
enormously thick compacta and correspondingly limited marrow volume. Their long bones
have a thick periosteum, which is strongly adhered to the inner cancellous layers of the bone.
Habib [68] also notes that the thick cortical bone of penguins serves both for ballast and
strength under extreme loading conditions such as manoeuvring in deep water. Both Meister
and Habib [66,68] have observed that these characteristics are not present in volant birds.
Therefore, penguins require robust bones to circumvent buoyancy issues. Perhaps then, the
presence of pneumatic features in penguins and other limitedly pneumatic taxa might only be
a superficial trait without any intraosseous aeration occurring in their limb bones and verte-
brae, or it could be a shared primitive trait retained from a flying ancestor.

Phylogenetic interpretations and implications for pneumaticity in extinct
taxa
All ratites exhibited extensive PSP, including not only the vertebral column, ribs, and girdle ele-
ments, but also the humeri, femora, and even, possibly, distal appendicular elements in some
specimens (see S1 Table), but the latter rarely occurs [6,36]. A recent phylogenetic analysis [69]
of bird interrelationships recovered a consensus tree based on both morphological and molecu-
lar data (Fig 6). Within Palaeognathae, Casuariidae and Apterygidae are sister clades and closer
to each other than they are to Tinamidae, Rheidae, and Struthionidae. The earliest neornithine
divergence, that of the palaeognaths, is among the best-resolved phylogenetic relationships
within the avian tree and the Galloanserae (Anseriformes+Galliformes) is considered to be the
successive sister group to all other Neoaves [69]. It may not stand as compelling morphological
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evidence to support a close phylogenetic relatedness between Anseriformes and Palaeognathes
but it is worthy to note, based on our observations on limited avian skeletal material, that the
ducks share more pneumatic elements with the ratites than with the other Neoaves examined.
For example, ducks and most ratites share laminated foramina, laminated fossae and foramina
within fossae in their cervical vertebrae while these features are absent in the loons, the grebe
and the penguins (Tables 2–5 and for more details see S3–S13 Tables). In Neognathae, Podici-
pedidae (grebes) are sister clade to Phoenicopteriidae (flamingos) and not as closely related as
previously thought to Gaviiformes (loons) and Sphenisciformes (penguins) [70,71]. Tinamous,
kiwis, and moas have high PI% (Table 1 and S1 Table) and symplesiomorphically share pneu-
matic elements in their cervical vertebrae, few pneumatic traits in their thoracic vertebrae, and
even fewer in their synsacrals. Consequently, it is predicted that the last common ancestor of
these three taxa had foramina, fossae, and laminae on its cervical vertebrae. Moreover, Struthio,
Rhea, Dromaius, and Emeus (moa) share most, if not all, pneumatic traits in their cervical, tho-
racic, and synsacral vertebrae. The sister clades Struthio and Rhea share the same pneumatic
traits between them, as do Dromaius and Casuarius. Thus, the distribution of the pneumaticity
data in the ratites is in agreement with their phylogenetic affinities (Fig 6). Therefore, patterns
of pneumaticity may have a strong phylogenetic signal in ratites.

Anseriformes, Gaviiformes, Podicipediformes, Sphenisciformes, Tinamiformes, and Apter-
ygiformes occupy different environmental niches and exhibit different modes of life, with the
exception of loons and grebes that live in similar environments and adopt the same foraging
strategies [29]. Their pneumatic characteristics must have been inherited from a distant com-
mon ancestor before the split between Palaeognathae and Neognathae. If the foramina, fossae,
and laminae serve as features for weight reduction in aerial locomotion, what could the purpose
be of retaining the pneumatic features after losing the ability to fly [72] in the strictly cursorial
ratites? The most plausible explanation could be that they simply retained these inherited ple-
siomorphic pneumatic characteristics, although a reduction in limb bone mass may have been
advantageous during the evolution of cursorial locomotion in some taxa (see also [41]).

Theropod lineages with large body sizes have been shown to exhibit increased PSP [41], sug-
gesting that mass reduction might have been one of the factors that has affected the early stages
of evolution of pneumaticity. However, the body size limit for extensive pneumatization in the-
ropods was lower, especially to those clades that were more closely related to birds (manirap-
torans). Thus, a limited association between body size and PSP appeared before the avian
origins and should not be accepted as a prerequisite to an adaptation for flight [41]. Benson
et al. [41] proposed that changes in osteological density of “small, non-volant maniraptorans
resulted in energetic savings as part of a multi-system response to increased metabolic
demands”([41]:1). Acquisition of extensive PSP in small-bodied maniraptorans may have indi-
cated avian-like endothermy but considering that some fish have PSP [60,61] emerging from
gas bladder diverticula, and that some varanids and chameleons have pneumatic diverticula
that do not invade their bony tissues, the correlation between endothermy and the presence of
either PSP or pulmonary diverticula is ambiguous, not least because it is uncertain when endo-
thermy appeared in theropods/birds. The findings of Benson et al. [41] confirm previous
research (e.g., [30,47]) that demonstrated the existence of extensive pneumaticity in abelisaur-
ids and allosaurids, theropods that could reach moderately large sizes within a short period.
The presence of extensive vertebral pneumatization and lamination in sauropods [18,37,39]

Fig 6. Phylogenetic interrelationships of the avian taxa in this study. Part of a consensus phylogenetic tree [69] based on combined genetic and
morphological data showing the interrelationships of the avian taxa included in this study. All clades and corresponding taxa except those in black
(Galloanseres and Palaeognathes) are within Neoaves. Those labelled red are Metaves within the Neoaves.

doi:10.1371/journal.pone.0143834.g006
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further supports arguments about adaptation for mass-reduction, since overall vertebral vol-
ume could be comprised 60% by air [37], as well as for reducing the need for structural support
during the evolution of their long necks [67,73].

Moreover, in extant volant birds, the presence of a respiratory system composed of non-com-
pliant gas exchanging lungs and compliant air sacs [12,73] enables a higher oxygen uptake under
resting conditions than seen in similarly-sized mammals [74], thus facilitating birds in their evo-
lutionary steps of achieving high-altitude flight. We hypothesize that vertebral pneumatization,
as a result of penetrating diverticula from the gas exchanging lung-air sac system, serves the pur-
pose of lightening the skeleton by reducing the cortex thickness [75] and bone density [28] since
marrow is replaced by air, thus aiding flying birds to achieve high altitude flight [36].

Having observed vertebral laminae and their close association with other pneumatic fea-
tures (e.g., pneumatic foramina, fossae) and cervical air sac diverticula we argue that the lami-
nae, although they may represent only ambiguous evidence for the presence of a heterogeneous
respiratory system, serve a combined function in many cases, acting as the attachment points
for both muscles and pneumatic diverticula, thus agreeing with observations made by previous
studies (e.g., [4,13,14]). A final observation of ours that also agrees with previous work on birds
(e.g., [4,28]) is that the air sac diverticula become less compliant and almost rigid before they
invade the bone via pneumatic foramina (Fig 4A and 4B).

Wedel [38] has argued that “Two problems with the identification of laminae that are rele-
vant to the question of pneumaticity are how well developed a ridge of bone must be before we
call it a lamina, and whether laminae are primarily additive structures formed by the deposition
of new bone, or are simply bone that is left over following the formation of fossae” ([38]: 210).
We propose that the principal function of vertebral laminae may have been either to partition
pneumatic diverticula on the neural arch and centrum, or to act as insertions for the neck and
trunk musculature. Moreover, the increase in laminar complexity and the appearance of four
novel laminae early in sauropod evolution implies an important structural role [37]. Further-
more, laminae have also been found on the vertebrae of salamanders, like the plethodontid
Aneides lugubris where plates of bone on its dorsal vertebrae connect the centrum with the
parapophyses [76]: although these laminae are not homologous to those found in archosaurs,
the existence of such similar osteological features indicates the structural importance of exten-
sive vertebral ossification in tetrapods [38]. The arrangement of vertebral laminae on the neu-
ral arch may reflect muscular, tendinous, or ligamentous stresses during development, as is
often the case with trabeculae in the bone of living animals [4,27,28]. Evidently, bone aeration
can be facilitated by minimizing the development of the cortical bone during ontogeny via
diverticular expansion (which leads to creation of broad fossae and light bones) (e.g., [73,52])
and/or by penetrating the cortical tissue via diverticula, thus forming foramina on the exterior
surface and trabeculae within the cancellous bone tissue (e.g., [39,73,38]).

Conclusions

a) Fossae, foramina, and laminae are present within the vertebral column either as single
structures or as parts of character combinations, leading to the recognition of seven pneu-
matic categories (Tables 2–5, and S3–S13 Tables). It is important to note that the osseous
septa connecting the clustered foramina, wherever present, are associated with anchoring
the diverticula before they invade the bone via foramina.

b) The distribution of pneumatic characters and the associations among them and with the
air sac system are taxonomically and individually variable. Avian taxa previously considered
to be postcranially apneumatic show minimal or moderate expression of potentially
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pneumatic features, which was probably inherited from a pneumatic common ancestor.
Nevertheless, appropriate tests of soft and hard tissue relationships in avian specimens with
minimal or absent pneumaticity are essential to confirm these suggestions.

c) Ratites display higher degrees of PSP than the neognaths examined (Tables 1–5 and S1–
S13 Tables).

d) The presence of laminae should not be used as evidence for the existence of PSP unless
careful examination of the vertebrae shows the presence of other established pneumatic fea-
tures (foramina, fossae). Although laminae, foramina, and fossae imply the presence of air
sacs, the reverse (i.e., the presence of air sacs does not necessitate the formation of PSP) is not
equally likely, especially in diving birds. Therefore, the presence of laminae does not necessi-
tate the presence of PSP, since laminae are not always associated with foramina or fossae.

f) Membranous air sac extensions and their associated muscles share the same attachment
points. Air sac diverticula attach to laminae or foramen/fossa margins before invading the
bone (Figs 2–5).

g) Among extant taxa, the pulmonary-air sac system is unique to Aves (e.g., [3,18]) but its
expression in the form of PSP is absent or only minimally present in some avian clades (e.g.,
penguins, loons, and grebes). Thus, we can be confident of the association between PSP and
pneumatic diverticula, although the purpose of the presence of PSP with relation to the
respiratory function is still unknown.
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