10 research outputs found

    Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia

    Get PDF
    Solar thermal technology to supply process heat in different industrial sectors has become very promising in recent years. Industries can reduce their consumption of fossil fuels by replacing them with solar process heat with non-conventional system integration and using clean energy. In this paper, a systematic review of 10 countries is presented which demonstrated extensive use of solar industrial process heating systems in their manufacturing sectors. This country-wise analysis is then used to compare with current Australian scenario and identify future prospects of integrating solar process heating in Australian industrial sectors. The choice of countries is based on a database where promising industrial sectors and solar process heating applications are currently using incident solar energy. These are analyzed for their potential of integration to developing solar heat in industrial processes (SHIP) and a number of potential industrial sectors that have the highest potential like Motor vehicles, Textiles, Printing, Wood, Paper, Fabricated metal, Rubber and plastics, chemicals, Food, beverages, electrical equipment, machinery, and equipment are being identified. An overview of available studies is discussed in this paper focused on specific countries and the industrial heat demand of existing operational plants. Future trends due to solar energy potential are also outlined

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Life-cycle assessment and economic analysis of renewable energy technologies

    No full text
    Thesis by publication.Bibliography: pages 268-302.1. Introduction -- 2. Literature review -- 3. Environmental impacts of solar-photovoltaic and solar-thermal systems with life-cycle assessment -- 4. A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe -- 5. Life-cycle impact assessment of renewable electricity generation systems in the United States -- 6. Life-cycle impact assessment of renewable electricity generation systems; a practical approach towards Switzerland -- 7. Advanced poer routing framework for optimal economic operation and control of solar photovoltaic-based islanded microgrid -- 8. Techno-economic operation and environmental life-cycle assessment of a solar PV-driven islanded microgrid -- 9. Conclusions and future work.Renewable Energy Technologies (RETs) offer the potential for low-carbon electricity production. The true potential of RETs can be established by assessing their environmental impact and cost for a region, based on a Life Cycle Assessment (LCA) approach. This Ph.D. thesis presents six contributions which analyse the environmental and economic benefit of RETs in specific regions. The first contribution is the LCA-based environmental effects evaluation of a solar-PV and a solar-thermal system. The second contribution is the environmental hazard estimation of existing hydro powerplants in Europe. The third contribution is the comparative environmental impact assessment of three different renewable-power plants, namely solar PV, biomass and pumped storage hydropower plants in the United States. The fourth contribution is the design and development of a new life-cycle inventory for solar PV, wind and hydro powerplants in Switzerland to evaluate life-cycle emissions and identify the best plant option. The fifth contribution is the development of an advanced power-routing framework for a solar PV-driven islanded microgrid. The final contribution of this research is the accomplishment of a Net-Present-Cost (NPC)-based optimization analysis and an LCA-based environmental-impact assessment of an off-grid microgrid framework. Overall, this work provides a clear identification of technologies which are environmentally-superior and cost-effective; thus allowing prioritisation of appropriate electricity production.Mode of access: Internet.1 online resource (xxxiii, 302 pages, maps
    corecore