8 research outputs found

    Design, synthesis and biological evaluation of Arylpiperazine-based novel Phthalimides: active inducers of testicular germ cell apoptosis

    Get PDF
    Understanding of apoptosis or programmed cell death has provided the basis for novel therapeutics that has resulted in rationally designed anticancer strategies. Recently, inducers of apoptosis have been used in cancer therapy. In this work, we describe the role of chiral phthalimides functionalized with piperazines as potential apoptotic inducers. The listed twenty phthalimides were assessed for their in vitro apoptotic activity against testicular germ cells. All phthalimides showed a significant apoptotic response (∼39 to ∼68%). TUNEL assay and acridine orange fluorescence staining were carried out to investigate the molecular mechanisms responsible for the cell death. Phthalimides exhibited substantial apoptotic induction following the intrinsic pathway mechanism. Studies advocated that the apoptotic induction was mediated through caspase-9, caspase-3, JNK MAP kinase and tumor suppressor p53, which was accompanied by DNA fragmentation and nuclear condensation. Besides, the best five phthalimides regarding apoptotic action were evaluated for in vitro cytotoxic effects against CAL-72 and MCF-7 cancer cell lines. Compounds showed efficient killing of cancer cells. This discovery of functionalized phthalimides as apoptotic inducers would be highly valuable in understanding the mechanism of apoptosis at the molecular level and opens up new possibilities for therapeutic strategies.info:eu-repo/semantics/publishedVersio

    N-methyl Benzimidazole Tethered Cholic Acid Amphiphiles Can Eradicate S. aureus-Mediated Biofilms and Wound Infections

    No full text
    Infections associated with Gram-positive bacteria like S. aureus pose a major threat as these bacteria can develop resistance and thereby limit the applications of antibiotics. Therefore, there is a need for new antibacterials to mitigate these infections. Bacterial membranes present an attractive therapeutic target as these membranes are anionic in nature and have a low chance of developing modifications in their physicochemical features. Antimicrobial peptides (AMPs) can disrupt the microbial membranes via electrostatic interactions, but the poor stability of AMPs halts their clinical translation. Here, we present the synthesis of eight N-methyl benzimidazole substituted cholic acid amphiphiles as antibacterial agents. We screened these novel heterocyclic cholic acid amphiphiles against different pathogens. Among the series, CABI-6 outperformed the other amphiphiles in terms of bactericidal activity against S. aureus. The membrane disruptive property of CABI-6 using a fluorescence-based assay has also been investigated, and it was inferred that CABI-6 can enhance the production of reactive oxygen species. We further demonstrated that CABI-6 can clear the pre-formed biofilms and can mitigate wound infection in murine models

    Nanoparticulate mediated transcutaneous immunization: Myth or reality

    No full text

    Ameliorating Effects of Natural Antioxidant Compounds on Female Infertility: a Review

    No full text
    corecore