186 research outputs found

    Failure of interpolation in the intuitionistic logic of constant domains

    Get PDF
    This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.Comment: 13 pages, 0 figures. Overlaps with arXiv 1202.1195 removed, the text thouroughly reworked in terms of notation and style, historical notes as well as some other minor details adde

    Distinct Clinical and Pathological Features Are Associated with the BRAFT1799A(V600E) Mutation in Primary Melanoma

    Get PDF
    The BRAFT1799A mutation encodes BRAFV600E that leads to activation of the mitogen-activated protein kinase pathway. This study aimed to assess the clinico-pathological features of primary invasive melanomas containing the BRAFT1799A mutation. Patients (n=251) with invasive primary melanomas from Australia were interviewed and examined with respect to their melanoma characteristics and risk factors. Independent review of pathology, allele-specific PCR for the BRAFT1799A mutation, immunohistochemical staining with Ki67, and phospho-histone-H3 (PH3) were performed. The BRAFT1799A mutation was found in 112 (45%) of the primary melanomas. Associations with the BRAFT1799A mutation (P<0.05) were as follows: low tumor thickness (odds ratio (OR)=3.3); low mitotic rate (OR=2.0); low Ki67 score (OR=5.0); low PH3 score (OR=3.3); superficial spreading melanoma (OR=10.0); pigmented melanoma (OR=3.7); a lack of history of solar keratoses (OR=2.7); a location on the trunk (OR=3.4) or extremity (OR=2.0); a high level of self-reported childhood sun exposure (OR=2.0); ≤50 years of age (OR=2.5); and fewer freckles (OR=2.5). We conclude that the BRAFT1799A mutation has associations with host phenotype, tumor location, and pigmentation. Although implicated in the control of the cell cycle, the BRAFT1799A mutation is associated with a lower rate of tumor proliferation

    Calibration and performance of the Galileo solid-state imaging system in Jupiter orbit

    Get PDF
    The solid-state imaging subsystem (SSI) on the National Aeronautics and Space Administration’s (NASA’s) Galileo Jupiter orbiter spacecraft has successfully completed its 2-yr primary mission exploring the Jovian system. The SSI has remained in remarkably stable calibration during the 8-yr flight, and the quality of the returned images is exceptional. Absolute spectral radiometric calibration has been determined to 4 to 6% across its eight spectral filters. Software and calibration files are available to enable radiometric, geometric, modulation transfer function (MTF), and scattered light image calibration. The charge-coupled device (CCD) detector endured the harsh radiation environment at Jupiter without significant damage and exhibited transient image noise effects at about the expected levels. A lossy integer cosine transform (ICT) data compressor proved essential to achieving the SSI science objectives given the low data transmission rate available from Jupiter due to a communication antenna failure. The ICT compressor does introduce certain artifacts in the images that must be controlled to acceptable levels by judicious choice of compression control parameter settings. The SSI team’s expertise in using the compressor improved throughout the orbital operations phase and, coupled with a strategy using multiple playback passes of the spacecraft tape recorder, resulted in the successful return of 1645 unique images of Jupiter and its satellites

    Discovery of Two Distant Type Ia Supernovae in the Hubble Deep Field North with the Advanced Camera for Surveys

    Get PDF
    We present observations of the first two supernovae discovered with the recently installed Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The supernovae were found in Wide Field Camera images of the Hubble Deep Field North taken with the F775W, F850LP, and G800L optical elements as part of the ACS guaranteed time observation program. Spectra extracted from the ACS G800L grism exposures confirm that the objects are Type Ia supernovae (SNe Ia) at redshifts z=0.47 and z=0.95. Follow-up HST observations have been conducted with ACS in F775W and F850LP and with NICMOS in the near-infrared F110W bandpass, yielding a total of 9 flux measurements in the 3 bandpasses over a period of 50 days in the observed frame. We discuss many of the important issues in doing accurate photometry with the ACS. We analyze the multi-band light curves using two different fitting methods to calibrate the supernovae luminosities and place them on the SNe Ia Hubble diagram. The resulting distances are consistent with the redshift-distance relation of the accelerating universe model, although evolving intergalactic grey dust remains as a less likely possibility. The relative ease with which these SNe Ia were found, confirmed, and monitored demonstrates the potential ACS holds for revolutionizing the field of high-redshift SNe Ia, and therefore of testing the accelerating universe cosmology and constraining the "epoch of deceleration".Comment: 11 pages, 8 embedded figures. Accepted for publication in Ap

    A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) multi-country prospective cohort study.

    Get PDF
    BACKGROUND: Pre-eclampsia/eclampsia are leading causes of maternal mortality and morbidity, particularly in low- and middle- income countries (LMICs). We developed the miniPIERS risk prediction model to provide a simple, evidence-based tool to identify pregnant women in LMICs at increased risk of death or major hypertensive-related complications. METHODS AND FINDINGS: From 1 July 2008 to 31 March 2012, in five LMICs, data were collected prospectively on 2,081 women with any hypertensive disorder of pregnancy admitted to a participating centre. Candidate predictors collected within 24 hours of admission were entered into a step-wise backward elimination logistic regression model to predict a composite adverse maternal outcome within 48 hours of admission. Model internal validation was accomplished by bootstrapping and external validation was completed using data from 1,300 women in the Pre-eclampsia Integrated Estimate of RiSk (fullPIERS) dataset. Predictive performance was assessed for calibration, discrimination, and stratification capacity. The final miniPIERS model included: parity (nulliparous versus multiparous); gestational age on admission; headache/visual disturbances; chest pain/dyspnoea; vaginal bleeding with abdominal pain; systolic blood pressure; and dipstick proteinuria. The miniPIERS model was well-calibrated and had an area under the receiver operating characteristic curve (AUC ROC) of 0.768 (95% CI 0.735-0.801) with an average optimism of 0.037. External validation AUC ROC was 0.713 (95% CI 0.658-0.768). A predicted probability ≥25% to define a positive test classified women with 85.5% accuracy. Limitations of this study include the composite outcome and the broad inclusion criteria of any hypertensive disorder of pregnancy. This broad approach was used to optimize model generalizability. CONCLUSIONS: The miniPIERS model shows reasonable ability to identify women at increased risk of adverse maternal outcomes associated with the hypertensive disorders of pregnancy. It could be used in LMICs to identify women who would benefit most from interventions such as magnesium sulphate, antihypertensives, or transportation to a higher level of care

    Structural signatures of igneous sheet intrusion propagation

    Get PDF
    The geometry and distribution of planar igneous bodies (i.e. sheet intrusions), such as dykes, sills, and inclined sheets, has long been used to determine emplacement mechanics, define melt source locations, and reconstruct palaeostress conditions to shed light on various tectonic and magmatic processes. Since the 1970’s we have recognised that sheet intrusions do not necessarily display a continuous, planar geometry, but commonly consist of segments. The morphology of these segments and their connectors is controlled by, and provide insights into, the behaviour of the host rock during emplacement. For example, tensile brittle fracturing leads to the formation of intrusive steps or bridge structures between adjacent segments. In contrast, brittle shear faulting, cataclastic and ductile flow processes, as well as heat-induced viscous flow or fluidization, promotes magma finger development. Textural indicators of magma flow (e.g., rock fabrics) reveal that segments are aligned parallel to the initial sheet propagation direction. Recognising and mapping segment long axes thus allows melt source location hypotheses, derived from sheet distribution and orientation, to be robustly tested. Despite the information that can be obtained from these structural signatures of sheet intrusion propagation, they are largely overlooked by the structural and volcanological communities. To highlight their utility, we briefly review the formation of sheet intrusion segments, discuss how they inform interpretations of magma emplacement, and outline future research directions.Facultad de Ciencias Naturales y Muse

    The development and characterization of a 60K SNP chip for chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In livestock species like the chicken, high throughput single nucleotide polymorphism (SNP) genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF) of the SNPs used are extremely important.</p> <p>Results</p> <p>We describe the design of a moderate density (60k) Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF) in the two major types of commercial chicken (broilers and layers). This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1). This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the current genome assembly.</p> <p>Conclusions</p> <p>The high success rate of the SNPs on the Illumina chicken 60K Beadchip emphasizes the power of Next generation sequence (NGS) technology for the SNP identification and selection step. The identification of SNPs from sequence contigs derived from NGS sequencing resulted in improved coverage of the chicken genome and the construction of two new linkage groups most likely representing two chicken micro-chromosomes.</p

    Calibration and performance of the Galileo solid-state imaging system in Jupiter orbit

    Get PDF
    The solid-state imaging subsystem (SSI) on the National Aeronautics and Space Administration’s (NASA’s) Galileo Jupiter orbiter spacecraft has successfully completed its 2-yr primary mission exploring the Jovian system. The SSI has remained in remarkably stable calibration during the 8-yr flight, and the quality of the returned images is exceptional. Absolute spectral radiometric calibration has been determined to 4 to 6% across its eight spectral filters. Software and calibration files are available to enable radiometric, geometric, modulation transfer function (MTF), and scattered light image calibration. The charge-coupled device (CCD) detector endured the harsh radiation environment at Jupiter without significant damage and exhibited transient image noise effects at about the expected levels. A lossy integer cosine transform (ICT) data compressor proved essential to achieving the SSI science objectives given the low data transmission rate available from Jupiter due to a communication antenna failure. The ICT compressor does introduce certain artifacts in the images that must be controlled to acceptable levels by judicious choice of compression control parameter settings. The SSI team’s expertise in using the compressor improved throughout the orbital operations phase and, coupled with a strategy using multiple playback passes of the spacecraft tape recorder, resulted in the successful return of 1645 unique images of Jupiter and its satellites
    corecore