210 research outputs found
Tissue-specific regulation of ACE/ACE2 and AT 1 /AT 2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-α knock-out mice: Oestrogen regulation of ACE/ACE2 and AT1/AT2
ACE and ACE2 and the AT1 and AT2 receptors are pivotal points of regulation in the renin-angiotensin system. ACE and ACE2 are key enzymes in the formation and degradation of Ang II and Ang-(1-7). Ang II acts at either the AT1 or the AT2 receptor to mediate opposing actions of vasoconstriction/vasodilation. While it is known that estrogen (E2) acts to down-regulate ACE and the AT1 receptors, its regulation of ACE2 and the AT2 receptor and the involvement of a specific estrogen receptor subtype are unknown. To investigate the role of estrogen receptor-α (ERα) in estrogen’s regulation of ACE/ACE2 and AT1/AT2 mRNAs in lung and kidney, ovariectomized female mice lacking apolipoprotein E (ee) with the ERα (AAee) or without the ERα (ααee) were treated with 17-β estradiol (6 µg/day) or placebo for 3 months. ACE,ACE2 and AT1/AT2 receptor mRNAs were measured using reverse transcriptase, real-time polymerase chain reaction (RT/RT-PCR). In the kidney, 17-β estradiol showed 1.7 fold down-regulation of ACE mRNA in AAee mice, with 2.1-fold up-regulation of ACE mRNA in ααee mice. 17-β estradiol showed 1.5 and 1.8 fold down-regulation of ACE2 and AT1 receptor mRNA in AAee mice; this regulation was lost in ααee mice. 17-β estradiol showed marked (81-fold) up-regulation of the AT2 receptor mRNA in AAee mice. In the lung 17-β estradiol treatment had no effect on AT1 receptor mRNA in AAee mice, but resulted in a 1.5-fold decreased regulation of AT1 mRNA in ααee. There was no significant interaction of estrogen with ER in the lung for ACE, ACE2, and AT2 receptor genes. These studies reveal tissue specific regulation by 17-β estradiol of ACE/ACE2 and AT1/AT2 receptor genes with the ERα receptor primarily responsible for the regulation of kidney ACE2 , AT1 receptor, and AT2 receptor genes
Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles.
Hepatic sinusoidal endothelial cells are unique among endothelial cells in their ability to internalize and process a diverse range of antigens. DC-SIGNR, a type 2 C-type lectin expressed on liver sinusoids, has been shown to bind with high affinity to hepatitis C virus (HCV) E2 glycoprotein. DC-SIGN is a closely related homologue reported to be expressed only on dendritic cells and a subset of macrophages and has similar binding affinity to HCV E2 glycoprotein. These receptors function as adhesion and antigen presentation molecules. We report distinct patterns of DC-SIGNR and DC-SIGN expression in human liver tissue and show for the first time that both C-type lectins are expressed on sinusoidal endothelial cells. We confirmed that these receptors are functional by demonstrating their ability to bind HCV E2 glycoproteins. Although these lectins on primary sinusoidal cells support HCV E2 binding, they are unable to support HCV entry. These data support a model where DC-SIGN and DC-SIGNR on sinusoidal endothelium provide a mechanism for high affinity binding of circulating HCV within the liver sinusoids allowing subsequent transfer of the virus to underlying hepatocytes, in a manner analogous to DC-SIGN presentation of human immunodeficiency virus on dendritic cells
A model of diffuse Galactic Radio Emission from 10 MHz to 100 GHz
Understanding diffuse Galactic radio emission is interesting both in its own
right and for minimizing foreground contamination of cosmological measurements.
Cosmic Microwave Background experiments have focused on frequencies > 10 GHz,
whereas 21 cm tomography of the high redshift universe will mainly focus on <
0.2 GHz, for which less is currently known about Galactic emission. Motivated
by this, we present a global sky model derived from all publicly available
total power large-area radio surveys, digitized with optical character
recognition when necessary and compiled into a uniform format, as well as the
new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify
statistical and systematic uncertainties in these surveys by comparing them
with various global multi-frequency model fits. We find that a principal
component based model with only three components can fit the 11 most accurate
data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an
accuracy around 1%-10% depending on frequency and sky region. Both our data
compilation and our software returning a predicted all-sky map at any frequency
from 10 MHz to 100 GHz are publicly available at
http://space.mit.edu/home/angelica/gsm .Comment: Accuracy improved with 5-year WMAP data. Our data, software and new
foreground-cleaned WMAP map are available at https://ascl.net/1011.01
Whey protein supplement as a source of microencapsulated PUFA-rich vegetable oils
Whey protein supplements (WPS) intake has been increasing worldwide as they are mainly used to improve overall athletic performance. Adding other bioactives such as polyunsaturated fatty acids (PUFA) may be an alternative to help fulfill nutritional needs. Microencapsulation is able to protect PUFA-rich oils from oxidation, but important aspects of particle production and their influence on food properties must be evaluated. This study aimed to develop WPS with microencapsulated green coffee and walnut oils using stearic acid as a wall material. Oxidative stability (differential scanning calorimetry) of the oils increased (from 82 ± 4 to 110 ± 10 kJ mol−1 for green coffee oil and from 90 ± 5 to 149 ± 1 kJ mol−1 for walnut oil) after encapsulation and WPS rheological properties were not affected by the microcapsules (p 0.05). Sensory analysis of the supplement containing microencapsulated green coffee oil showed a lower sensory preference than the blank sample, but no difference was found with the blank sample in the case of walnut oil (p 0.05). The encapsulation strategy used to produce an enriched WPS was efficient in protecting the oils from oxidative degradation.This study was financed in part by the Coordenaç~ao de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
This work was financially supported by Associate Laboratory LSRE-LCM
(UIDB/50020/2020) and CIMO (UIDB/00690/2020) funded by national
funds through FCT/MCTES.info:eu-repo/semantics/publishedVersio
Persistence of Mycoplasma genitalium Following Azithromycin Therapy
BACKGROUND: To determine clinical outcomes and cure rates for M.genitalium genital infection in men and women following azithromycin 1 g. METHODOLOGY: Patients attending Melbourne Sexual Health Centre between March 2005 and November 2007 with urethritis/epididymitis, cervicitis/pelvic inflammatory disease and sexual contacts of M.genitalium were tested for M.genitalium by polymerase chain reaction (PCR). M.genitalium-infection was treated with 1 g of azithromycin and a test-of-cure (toc) was performed one month post-azithromycin. Response to azithromycin, and response to moxifloxacin (400 mg daily for 10 days) in individuals with persistent infection post-azithromycin, was determined. PRINCIPAL FINDINGS: Of 1538 males and 313 females tested, 161 males (11%) and 30 females (10%) were infected with M.genitalium. A toc was available on 131 (69%) infected individuals (median = 36 days [range 12-373]). Of 120 individuals prescribed azithromycin only pre-toc, M.genitalium was eradicated in 101 (84%, 95% confidence intervals [CI]: 77-90%) and persisted in 19 (16%, 95% CI: 10-23%). Eleven individuals with persistent infection (9%, 95% CI: 5-15%) had no risk of reinfection from untreated-partners, while eight (7%, 95% CI: 3-12%) may have been at risk of reinfection from doxycycline-treated or untreated-partners. Moxifloxacin was effective in eradicating persistent infection in all cases not responding to azithromycin. Patients with persistent-M.genitalium were more likely to experience persistent symptoms (91%), compared to patients in whom M.genitalium was eradicated (17%), p<0.0001. CONCLUSION: Use of azithromycin 1 g in M.genitalium-infected patients was associated with unacceptable rates of persistent infection, which was eradicated with moxifloxacin. These findings highlight the importance of follow-up in M.genitalium-infected patients prescribed azithromycin, and the need to monitor for the development of resistance. Research to determine optimal first and second-line therapeutic agents for M.genitalium is needed
The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30
The green microalga Dunaliella salina survives in a wide range of salinities via mechanisms involving glycerol synthesis and degradation and is exploited for large amounts of nutraceutical carotenoids produced under stressed conditions. In this study, D. salina CCAP 19/30 was cultured in varying photoperiods and light intensities to study the relationship of light with different growth measurement parameters, with cellular contents of glycerol, starch and carotenoids, and with photosynthesis and respiration. Results show CCAP 19/30 regulated cell volume when growing under light/dark cycles: cell volume increased in the light and decreased in the dark, and these changes corresponded to changes in cellular glycerol content. The decrease in cell volume in the dark was independent of cell division and biological clock and was regulated by the photoperiod of the light/dark cycle. When the light intensity was increased to above 1000 μmol photons m−2 s−1, cells displayed evidence of photodamage. However, these cells also maintained the maximum level of photosynthesis efficiency and respiration possible, and the growth rate increased as light intensity increased. Significantly, the intracellular glycerol content also increased, >2-fold compared to the content in light intensity of 500 μmol photons m−2 s−1, but there was no commensurate increase in the pool size of carotenoids. These data suggest that in CCAP 19/30 glycerol stabilized the photosynthetic apparatus for maximum performance in high light intensities, a role normally attributed to carotenoids
DC-SIGN Induction in Alveolar Macrophages Defines Privileged Target Host Cells for Mycobacteria in Patients with Tuberculosis
BACKGROUND: Interplays between Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB) in human and host professional phagocytes, namely macrophages (Mφs) and dendritic cells (DCs), are central to immune protection against TB and to TB pathogenesis. We and others have recently shown that the C-type lectin dendritic cell–specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN; CD209) mediates important interactions between mycobacteria and human monocyte-derived DCs (MoDCs) in vitro. METHODS AND FINDINGS: In order to explore the possible role of DC-SIGN in M. tuberculosis infection in vivo, we have analysed DC-SIGN expression in broncho-alveolar lavage (BAL) cells from patients with TB (n = 40) or with other non-mycobacterial lung pathologies, namely asthma (n = 14) and sarcoidosis (n = 11), as well as from control individuals (n = 9). We show that in patients with TB, up to 70% of alveolar Mφs express DC-SIGN. By contrast, the lectin is barely detected in alveolar Mφs from all other individuals. Flow cytometry, RT-PCR, and enzyme-linked immunosorbent assay analyses of BAL-derived fluids and cells indicated that M. tuberculosis infection induces DC-SIGN expression in alveolar Mφs by a mechanism that is independent of Toll-like receptor-4, interleukin (IL)-4, and IL-13. This mechanism most likely relies on the secretion of soluble host and/or mycobacterial factors that have yet to be identified, as both infected and uninfected bystander Mφs were found to express DC-SIGN in the presence of M. tuberculosis. Immunohistochemical examination of lung biopsy samples from patients with TB showed that the bacilli concentrate in pulmonary regions enriched in DC-SIGN-expressing alveolar Mφs in vivo. Ex vivo binding and inhibition of binding experiments further revealed that DC-SIGN–expressing alveolar Mφs constitute preferential target cells for M. tuberculosis, as compared to their DC-SIGN(−) counterparts. In contrast with what has been reported previously in MoDCs in vitro, ex vivo DC-SIGN ligation by mycobacterial products failed to induce IL-10 secretion by alveolar Mφs, and IL-10 was not detected in BALs from patients with TB. CONCLUSION: Altogether, our results provide further evidence for an important role of DC-SIGN during TB in humans. DC-SIGN induction in alveolar Mφs may have important consequences on lung colonization by the tubercle bacillus, and on pulmonary inflammatory and immune responses in the infected host
LIBRETTO-531: A Phase III Study of Selpercatinib in Multikinase Inhibitor-Naïve
Selpercatinib is a first-in-class, highly selective and potent, central nervous system-active RET kinase inhibitor. In the phase I/II trial, selpercatinib demonstrated clinically meaningful antitumor activity with manageable toxicity in heavily pre-treated and treatment-naive patients with RET-mutant medullary thyroid cancer (MTC). LIBRETTO-531 (NCT04211337) is a multicenter, open-label, randomized, controlled, phase III trial comparing selpercatinib to cabozantinib or vandetanib in patients with advanced/metastatic RET-mutant MTC. The primary objective is to compare progression-free survival (per RECIST 1.1) by blinded independent central review of patients with progressive, advanced, multikinase inhibitor-naive, RET-mutant MTC treated with selpercatinib versus cabozantinib or vandetanib. Key secondary objectives are to compare other efficacy outcomes (per RECIST 1.1) and tolerability of selpercatinib versus cabozantinib or vandetanib
Skunk River Fall 1998
https://openspace.dmacc.edu/skunkriver/1019/thumbnail.jp
Role of CYP27A in cholesterol and bile acid metabolism
The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied. In contrast to homozygotes, heterozygotes had increased body weight and were mildly hypercholesterolemic, with increased numbers of lipoprotein particles in the low density lipoprotein size range. Cyp7A expression was not increased in heterozygotes but was in homozygotes, suggesting that parts of the homozygous phenotype are secondary to increased cyp7A expression and activity. Homozygotes exhibited pronounced hepatomegaly and dysregulation in hepatic cholesterol, bile acid, and fatty acid metabolism. Hepatic cholesterol synthesis and synthesis of bile acid intermediates were increased; however, side chain cleavage was impaired, leading to decreased bile salt concentrations in gallbladder bile. Expression of Na-taurocholate cotransporting polypeptide, the major sinusoidal bile salt transporter, was increased, and that of bile salt export pump, the major canalicular bile salt transporter, was decreased. Gender played a modifying role in the homozygous response to cyp27A deficiency, with females being gen
- …