168 research outputs found
Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)
Aim: Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America. The primary objectives of this study were to characterize range-wide genetic diversity and genetic structuring in quaking aspen, and to assess the influence of glacial history and rear-edge dynamics.
Location: North America.
Methods: Using a sample set representing the full longitudinal and latitudinal extent of the species’ distribution, we examined geographical patterns of genetic diversity and structuring using 8 nuclear microsatellite loci in 794 individuals from 30 sampling sites.
Results: Two major genetic clusters were identified across the range: a southwestern cluster and a northern cluster. The south-western cluster, which included two subclusters, was bounded approximately by the Continental Divide to the east and the southern extent of the ice sheet at the Last Glacial Maximum to the north. Subclusters were not detected in the northern cluster, despite its continent-wide distribution. Genetic distance was significantly correlated with geographical distance in the south-western but not the northern cluster, and allelic richness was significantly lower in south-western sampling sites compared with northern sampling sites. Population structuring was low overall, but elevated in the south-western cluster.
Main conclusions: Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene and reunited following glacial retreat, similar to patterns found in other forest tree species in the western USA. In aspen, populations in the southwestern portion of the species range are thought to be at particularly high risk of mortality with climate change. Our findings suggest that these same populations may be disproportionately valuable in terms of both evolutionary potential and conservation value
Coupling spectral and resource-use complementarity in experimental grassland and forest communites
Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n-dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity
Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments
Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy datawere used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic-functional community composition of vegetation. We examined the relationships between the image-derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River—where plant diversity and productivity were consistently higher—belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly
Earthworms and mesofauna from an isolated, alkaline chemical waste site in Northwest England
Post-industrial sites across Europe may have developed over periods in excess of a century, often leading to poor nutrient soils with noxious constituents and extreme pH values. One such site, Nob End (Bolton, UK), a toxic tip created in the 1800s from a sodium carbonate factory, represents an “island of alkalinity in an acidic sea” where the weathering process (from pH 12) has provided a suitable environment for a rich alkali-loving flora and hence, deserving its designation as a Site of Special Scientific Interest. Despite their importance, the belowground communities have not been investigated and for this reason, in this study, we explored how soil macro- and mesofauna communities respond to extreme pH values in a system that has also experienced recent changes in management practices. As expected, earthworms, mites, insects and woodlice numbers were significantly higher and the community diversity enriched at the (now pH 8) alkaline sites, whereas in areas where acidic boiler waste was historically deposited, enchytraeids, collembolans and dipteran larvae populations dominated the soil communities. Surprisingly, site management (cutting back of scrub) in the alkaline soil areas had a significant positive effect on soil macro-fauna by promoting numbers and biomass, but severely reduced the microarthropod populations. A transect investigation across an increasing pH gradient (from 4.5 to 8.0) was mirrored by a rise in earthworm numbers and species richness. Earthworms were further investigated surrounding the site, seeking potential sources of colonisation, with the majority of species at Nob End also present in adjacent non-industrially-influenced areas. This work demonstrates that soil fauna can ultimately colonise extreme edaphic conditions and these extreme environments have not prompted the development of specific faunal communities. As management of above-ground communities significantly influenced soil invertebrate communities, this could represent an important restoration practice to improve soil structure and fertility at this polluted site
The effect of top‐predator presence and phenotype on aquatic microbial communities
The presence of predators can impact a variety of organisms within the ecosystem, including microorganisms. Because the effects of fish predators and their phenotypic differences on microbial communities have not received much attention, we tested how the presence/absence, genotype, and plasticity of the predatory three-spine stickleback (Gasterosteus aculeatus) influence aquatic microbes in outdoor mesocosms. We reared lake and stream stickleback genotypes on contrasting food resources to adulthood, and then added them to aquatic mesocosm ecosystems to assess their impact on the planktonic bacterial community. We also investigated whether the effects of fish persisted following the removal of adults, and the subsequent addition of a homogenous juvenile fish population. The presence of adult stickleback increased the number of bacterial OTUs and altered the size structure of the microbial community, whereas their phenotype affected bacterial community composition. Some of these effects were detectable after adult fish were removed from the mesocosms, and after juvenile fish were placed in the tanks, most of these effects disappeared. Our results suggest that fish can have strong short-term effects on microbial communities that are partially mediated by phenotypic variation of fish
Litter mixture interactions at the level of plant functional types are additive.
It is very difficult to estimate litter decomposition rates in natural ecosystems because litters of many species are mixed and idiosyncratic interactions occur among those litters. A way to tackle this problem is to investigate litter mixing effects not at the species level but at the level of Plant Functional Types (PFTs). We tested the hypothesis that at the PFT level positive and negative interactions balance each other, causing an overall additive effect (no significant interactions among PFTs). Thereto, we used litter of four PFTs from a temperate peatland in which random draws were taken from the litter species pool of each PFT for every combination of 2, 3, and 4 PFTs. Decomposition rates clearly differed among the 4 PFTs (Sphagnum spp. < graminoids = N-fixing tree < forbs) and showed little variation within the PFTs (notably for the Sphagnum mosses and the graminoids). Significant positive interactions (4 out of 11) in the PFT mixtures were only found after 20 weeks and in all these combinations Sphagnum was involved. After 36 and 56 weeks of incubation interactions were not significantly different from zero. However, standard deviations were larger than the means, indicating that positive and negative interactions balanced each other. Thus, when litter mixture interactions are considered at the PFT level the interactions are additive. From this we conclude that for estimating litter decomposition rates at the ecosystem level, it is sufficient to use the weighted (by litter production) average decomposition rates of the contributing PFTs. © 2009 The Author(s)
Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species.
The mass loss of litter mixtures is often different than expected based on the mass loss of the component species. We investigated if the identity of neighbour species affects these litter-mixing effects. To achieve this, we compared decomposition rates in monoculture and in all possible two-species combinations of eight tree species, widely differing in litter chemistry, set out in two contrasting New Zealand forest types. Litter from the mixed-species litter bags was separated into its component species, which allowed us to quantify the importance of litter-mixing effects and neighbour identity, relative to the effects of species identity, litter chemistry and litter incubation environment. Controlling factors on litter decomposition rate decreased in importance in the order: species identity (litter quality) >> forest type >> neighbour species. Species identity had the strongest influence on decomposition rate. Interspecific differences in initial litter lignin concentration explained a large proportion of the interspecific differences in litter decomposition rate. Litter mass loss was higher and litter-mixture effects were stronger on the younger, more fertile alluvial soils than on the older, less-fertile marine terrace soils. Litter-mixture effects only shifted percentage mass loss within the range of 1.5%. There was no evidence that certain litter mixtures consistently showed interactive effects. Contrary to common theory, adding a relatively fast-decomposing species generally slowed down the decomposition of the slower decomposing species in the mixture. This study shows that: (1) species identity, litter chemistry and forest type are quantitatively the most important drivers of litter decomposition in a New Zealand rain forest; (2) litter-mixture effects—although statistically significant—are far less important and hardly depend on the identity and the chemical characteristics of the neighbour species; (3) additive effects predominate in this ecosystem, so that mass dynamics of the mixtures can be predicted from the monocultures
Predasjon i norsk næringsliv : utfordringer ved kostnadsestimering.
Denne utredningen tar for seg utfordringer som oppstår ved beregning av kostnader i forbindelse
med mistanke om utnyttelse av dominerende stilling i form av rovprising. Til dette formålet har
jeg sett på hvilke regler som ligger til grunn for regulering av dominante aktører og jeg har sett på
hovedelement fra kostnadsregnskapet som er nødvendig for utføre teste den norske lovgivningen
krever i dag. Utfordringen som ligger i kostnadstestene har jeg belysts ved å se på
kostnadsestimering i luftfarten
Does Intraspecific Size Variation in a Predator Affect Its Diet Diversity and Top-Down Control of Prey?
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity
- …