8 research outputs found

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation

    No full text
    Sleep deprivation is accompanied by the progressive development of an irresistible need to sleep, a phenomenon whose mechanism has remained elusive. Here, we identified for the first time a reflection of that phenomenon in vitro by showing that, after a short 2 h period of total sleep deprivation, the action of noradrenaline on the wake-promoting hypocretin/orexin neurons changes from an excitation to an inhibition. We propose that such a conspicuous modification of responsiveness should contribute to the growing sleepiness that accompanies sleep deprivation

    Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons

    No full text
    The hypocretin-orexin (hcrt-orx) neurons are thought to maintain wakefulness because their loss results in narcolepsy. This role may be fulfilled by the excitatory action that the hcrt-orx peptide exerts on multiple brainstem and forebrain systems that, in turn, promote cortical activation. Here, we examined whether hcrt-orx may also exert a postsynaptic excitatory action at the level of the cortex, where hcrt-orx fibers project. However, we found that neurons in layers 2-5 in the primary somatosensory cortex (SSp) were unresponsive to hcrt-orx. We then found that although all neurons tested in sublayer 6a were also unresponsive to hcrt-oxr, all those tested in sublayer 6b were highly sensitive to the peptide. The sublayer selectivity of hcrt-oxr was not restricted to the somatosensory cortex, because it was also found to be present in the primary visual cortex, the motor cortex, and the cingulate cortex. In the SSp, in which the hcrt-oxr effect was investigated further, it was demonstrated to be postsynaptic, to result from an interaction with Hcrtr2-OX2 receptors and to depend on the closure of a potassium conductance. Similar to the selectivity of action in the thalamus, where hcrt-oxr excites the nonspecific thalamocortical projection neurons and not the specific sensory relay neurons, here in the cortex, it excites a specific subset of cortical neurons which, through corticocortical projections, may also be involved in promoting widespread cortical activation

    Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons

    No full text
    As is evident from the pathological consequences of its absence in narcolepsy, orexin (hypocretin) appears to be critical for the maintenance of wakefulness. Via diffuse projections through the brain, orexin-containing neurons in the hypothalamus may act on a number of wake-promoting systems. Among these are the intralaminar and midline thalamic nuclei, which project in turn in a widespread manner to the cerebral cortex within the nonspecific thalamocortical projection system. Testing the effect of orexin in rat brain slices, in two nuclei of this system, centromedial (CM) nuclei and rhomboid nuclei, we found that it depolarized and excited all neurons tested through a direct postsynaptic action. An additional analysis of this effect in CM neurons indicates that it results from the decrease of a potassium conductance. By a detailed comparison of the effects of orexin A and B, we established that orexin B was more potent than orexin A, indicating the probable mediation by orexin type 2 receptors. In contrast to its effect on the nonspecific thalamocortical projection neurons, orexin had no effect on the specific sensory relay neurons of the somatic, ventral posterolateral, and visual dorsal lateral geniculate nuclei. Orexin differs in this regard from norepinephrine and acetylcholine, to which neurons in the specific and nonspecific systems are sensitive. Orexin may thus act in the thalamus to promote wakefulness by exciting neurons of the nonspecific thalamocortical projection system, which, through widespread projections to the cerebral cortex, stimulate and maintain cortical activation

    Nicotinic enhancement of the noradrenergic inhibition of sleep-promoting neurons in the ventrolateral preoptic area

    No full text
    According to multiple lines of evidence, neurons in the ventrolateral preoptic area (VLPO) that contain GABA promote sleep by inhibiting neurons of the arousal systems. Reciprocally, transmitters used by these systems, including acetylcholine (ACh) and noradrenaline (NA), exert an inhibitory action on the VLPO neurons. Because nicotine, an agonist of ACh, acts as a potent stimulant, we queried whether it might participate in the cholinergic inhibition of these sleep-promoting cells. Indeed, we found that ACh inhibits the VLPO neurons through a nicotinic, as well as a muscarinic, action. As evident in the presence of atropine, the non-muscarinic component was mimicked by epibatidine, a nonselective nicotinic ACh receptor (nAChR) agonist and was blocked by dihydro-beta-erythroidine, a nonselective nAChR antagonist. It was not, however, blocked by methyllycaconitine, a selective antagonist of the alpha7 subtype, indicating that the action was mediated by non-alpha7 nAChRs. The nicotinic inhibition was attributed to a presynaptic facilitation of NA release because it persisted in the presence of tetrodotoxin and was blocked by yohimbine and RS 79948, which are both selective antagonists of alpha2 adrenergic receptors. Sleep-promoting VLPO neurons are thus dually inhibited by ACh through a muscarinic postsynaptic action and a nicotinic presynaptic action on noradrenergic terminals. Such dual complementary actions allow ACh and nicotine to enhance wakefulness by inhibiting sleep-promoting systems while facilitating other wake-promoting systems

    The Wake-Promoting Hypocretin–Orexin Neurons Are in an Intrinsic State of Membrane Depolarization

    No full text
    Wakefulness depends on the activity of hypocretin-orexin neurons because their lesion results in narcolepsy. How these neurons maintain their activity to promote wakefulness is not known. Here, by recording for the first time from hypocretin-orexin neurons and comparing their properties with those of neurons expressing melanin-concentrating hormone, we show that hypocretin-orexin neurons are in an intrinsic state of membrane depolarization that promotes their spontaneous activity. We propose that wakefulness and associated energy expenditure thus depend on that property, which allows the hypocretin-orexin neurons to maintain a tonic excitatory influence on the central arousal and peripheral sympathetic systems
    corecore