123 research outputs found

    WISE colours and star-formation in the host galaxies of radio-loud narrow-line Seyfert 1

    Get PDF
    We investigate the mid-infrared properties of the largest (42 objects) sample of radio-loud narrow-line Seyfert 1 (RL NLS1) collected to date, using data from the Wide-field Infrared Survey Explorer (WISE). We analyse the mid-IR colours of these objects and compare them to what is expected from different combinations of AGN and galaxy templates. We find that, in general, the host-galaxy emission gives an importan contribution to the observed mid-IR flux in particular at the longest wavelengths (W3, at 12micron, and W4, at 22micron). In about half of the sources (22 objects) we observe a very red mid-IR colour (W4-W3>2.5) that can be explained only using a starburst galaxy template (M82). Using the 22micron luminosities, corrected for the AGN contribution, we have then estimated the star-formation rate for 20 of these "red" RL NLS1, finding values ranging from 10 to 500 Msun/y. For the RL NLS1 showing bluer colours, instead, we cannot exclude the presence of a star-forming host galaxy although, on average, we expect a lower star-formation rate. Studying the radio (1.4GHz) to mid-IR (22micron) flux ratios of the RL NLS1 in the sample we found that in ~10 objects the star-forming activity could represent the most important component also at radio frequencies, in addition (or in alternative) to the relativistic jet. We conclude that both the mid-IR and the radio emission of RL NLS1 are a mixture of different components, including the relativistic jet, the dusty torus and an intense star-forming activity.Comment: Accepted for publication in MNRAS, 11 pages, 7 figures, 2 table

    The XMM-Newton view of the relativistic spectral features in AXJ0447-0627

    Full text link
    The XMM-Newton observation of the optically Type 1 AGN AXJ0447-0627 (z=0.214) unambiguously reveals a complex, bright and prominent set of lines in the 4-8 keV rest frame energy range. Although, from a phenomenological point of view, the observed properties can be described by a simple power law model plus 5 narrow Gaussian lines (at rest frame energies of nearly 4.49, 5.55, 6.39, 7.02 and 7.85 keV), we find that a model comprising a power law (Gamma of the order of 2.2), a reflected relativistic continuum, a narrow Fe I Kalpha line from neutral material as well as a broad Fe Kalpha relativistic line from a ionized accretion disk represents a good physical description of the data. The ''double horned'' profile of the relativistic line implies an inclination of the accretion disk of the order of 45 degree, and an origin in a narrow region of the disk, from R_in of the order of 19 GM/c^2 to R_out of the order of 30 GM/c^2. The narrow Fe I Kalpha line from neutral material is probably produced far from the central black hole, most likely in the putative molecular torus. Although some of these properties have been already found in other Type 1 AGN and discussed in the literature, at odd with the objects reported so far we measure high equivalent widths (EWs) of the observed lines: nearly 1.4 keV for the ``double horned'' relativistic line and nearly 0.4 keV for the narrow line.Comment: 16 pages, 3 figures, Latex manuscript; accepted for publication in Ap

    On the cosmological evolution of BL Lacs

    Get PDF
    We study the cosmological evolution of BL Lac objects by applying the Ve/Va analysis to a new sample of 55 objects presented for the first time in this paper. This sample has been selected from the 239 sources with the brightest X-ray flux (>4X10^-13 erg s^-1 cm^-2) and relatively bright optical counterpart (B<20.5) among the ~1600 objects included in the REX survey. The uniform distribution of the Ve/Va values found in the sample suggests that BL Lac objects are not affected by a strong cosmological evolution in contrast with the behavior observed in the emission line AGNs. The Ve/Va analysis applied to the subsample of the High energy peaked BL Lacs (HBL) does not reveal a significant departure from a uniform distribution. This result suggests either that the cosmological evolution is less extreme than that previously found in other samples or that it is carried out only by a minority of objects, namely by the most extreme HBLs.Comment: Accepted for publication in Part 1 of The Astrophysical Journa

    SDSSJ143244.91+301435.3: a link between radio-loud narrow-line Seyfert 1 galaxies and compact steep-spectrum radio sources?

    Full text link
    We present SDSSJ143244.91+301435.3, a new case of radio-loud narrow line Seyfert 1 (RL NLS1) with a relatively high radio power (P1.4GHz=2.1x10^25 W Hz^-1) and large radioloudness parameter (R1.4=600+/-100). The radio source is compact with a linear size below ~1.4 kpc but, contrary to most of the RL NLS1 discovered so far with such a high R1.4, its radio spectrum is very steep (alpha=0.93) and not supporting a 'blazar-like' nature. Both the small mass of the central super-massive black-hole and the high accretion rate relative to the Eddington limit estimated for this object (3.2x10^7 Msun and 0.27, respectively, with a formal error of ~0.4 dex on both quantities) are typical of the class of NLS1. Through a modeling of the spectral energy distribution of the source we have found that the galaxy hosting SDSSJ143244.91+301435.3 is undergoing a quite intense star-formation (SFR=50 Msun y^-1) which, however, is expected to contribute only marginally (~1 per cent) to the observed radio emission. The radio properties of SDSSJ143244.91+301435.3 are remarkably similar to those of compact steep spectrum (CSS) radio sources, a class of AGN mostly composed by young radio galaxies. This may suggest a direct link between these two classes of AGN, with the CSS sources possibly representing the misaligned version (the so-called parent population) of RL NLS1 showing blazar characteristics.Comment: 14 pages, 7 figures, 4 tables, accepted for publication in MNRA

    Cluster Evolution in the ROSAT North Ecliptic Pole Survey

    Get PDF
    The deepest region of the ROSAT All-Sky Survey, at the North Ecliptic Pole, has been studied to produce a complete and unbiased X-ray selected sample of clusters of galaxies. This sample is used to investigate the nature of cluster evolution and explore potential implications for large-scale structure models. The survey is 99.6% optically identified. Spectroscopic redshifts have been measured for all the extragalactic identifications. In this Letter, first results on cluster evolution are presented based on a comparison between the number of the observed clusters in the North Ecliptic Pole survey and the number of expected clusters assuming no-evolution models. At z>0.3 there is a deficit of clusters with respect to the local universe which is significant at > 4.7sigma. The evolution appears to commence at L_{0.5-2.0} > 1.8x10^{44} erg s^{-1} in our data. The negative evolution goes in the same direction as the original EMSS result, the results from the 160 deg^{2} survey by Vikhlinin et al. (1998) and the recent results from the RDCS (Rosati et al. 2000). At lower redshifts there is no evidence for evolution, a result in agreement with these and other cluster surveys.Comment: 17 pages, 3 figures. Accepted for publication in ApJ Letter

    Photo-centric variability of quasars caused by variations in their inner structure: Consequences on Gaia measurements

    Get PDF
    We study the photocenter position variability due to variations in the quasar inner structure. We consider variability in the accretion disk emissivity and torus structure variability due to different illumination by the central source. We discuss possible detection of these effects by Gaia. Observations of the photocenter variability in two AGNs, SDSS J121855+020002 and SDSS J162011+1724327 have been reported and discussed. With investigation of the variations in the quasar inner structure we explore how much this effect can affect the position determination and whether it can be (or not) detected with Gaia mission. We used (a) a model of a relativistic disk, including the perturbation that can increase brightness of a part of the disk, and consequently offset the photocenter position, and (b) a model of a dusty torus which absorbs and re-emits the incoming radiation from accretion disk. We estimated the value of the photocenter offset due to these two effects. We found that perturbations in the inner structure can significantly offset the photocenter. It depends on the characteristics of perturbation and accretion disk and structure of the torus. In the case of two considered QSOs the observed photocenter offsets cannot be explained by variations in the accretion disk and other effects should be considered. We discussed possibility of exploding stars very close to the AGN source, and also possibility that there are two variable sources in the center of these two AGNs that may indicate a binary super-massive black hole system on a kpc (pc) scale. The Gaia mission seems to be very perspective, not only for astrometry, but also for exploring the inner structure of AGNs. We conclude that variations in the quasar inner structure can affect the observed photocenter (up to several mas). There is a chance to observe such effect in the case of bright and low-redshifted QSOs.Comment: 12 pages, 8 figures, 3 tables. Accepted for publication in Astronomy and Astrophysics. Language improved, typos correcte

    An XMM-Newton Study of the Hard X-ray Sky

    Full text link
    We report on the spectral properties of a sample of 90 hard X-ray selected serendipitous sources detected in 12 XMM observations with 1<F(2-10)<80 10^(-14) erg/cm2/s. Approximately 40% of the sources are optically identified with 0.1<z<2 and most of them are classified as broad line AGNs. A simple model consisting of power law modified by Galactic absorption offers an acceptable fit to ~65% of the source spectra. This fit yields an average photon index of ~1.55 over the whole sample. We also find that the mean slope of the QSOs in our sample turns out to remain nearly constant (~1.8-1.9) between 0<z<2, with no hints of particular trends emerging along z. An additional cold absorption component with 10^(21)<Nh<10^(23) cm^(-2) is required in ~30% of the sources. Considering only subsamples that are complete in flux, we find that the observed fraction of absorbed sources (i.e. with Nh>~10^(22) cm^(-2)) is ~30%, with little evolution in the range 2<F(2-10)<80 10^(-14) erg/cm2/s. Interestingly, this value is a factor ~2 lower than predicted by the synthesis models of the CXB. This finding, detected for the first time in this survey, therefore suggests that most of the heavily obscured objects which make up the bulk of the CXB will be found at lower fluxes (F(2-10)< 10^(-14) erg/cm2/s). This mismatch together with other recent observational evidences which contrast with CXB model predictions suggest that one (or more) of the assumptions usually included in these models need to be revised.Comment: 20 pages, 13 figures, accepted for publication in A&
    corecore