25 research outputs found

    A systematic correlation between two-dimensional flow topology and the abstract statistics of turbulence

    Full text link
    Velocity differences in the direct enstrophy cascade of two-dimensional turbulence are correlated with the underlying flow topology. The statistics of the transverse and longitudinal velocity differences are found to be governed by different structures. The wings of the transverse distribution are dominated by strong vortex centers, whereas, the tails of the longitudinal differences are dominated by saddles. Viewed in the framework of earlier theoretical work this result suggests that the transfer of enstrophy to smaller scales is accomplished in regions of the flow dominated by saddles.Comment: 4 pages, 4 figure

    In Vivo Detection of Amyloid-ÎČ Deposits Using Heavy Chain Antibody Fragments in a Transgenic Mouse Model for Alzheimer's Disease

    Get PDF
    This study investigated the in vivo properties of two heavy chain antibody fragments (VHH), ni3A and pa2H, to differentially detect vascular or parenchymal amyloid-ÎČ deposits characteristic for Alzheimer's disease and cerebral amyloid angiopathy. Blood clearance and biodistribution including brain uptake were assessed by bolus injection of radiolabeled VHH in APP/PS1 mice or wildtype littermates. In addition, in vivo specificity for AÎČ was examined in more detail with fluorescently labeled VHH by circumventing the blood-brain barrier via direct application or intracarotid co-injection with mannitol. All VHH showed rapid renal clearance (10–20 min). Twenty-four hours post-injection 99mTc-pa2H resulted in a small yet significant higher cerebral uptake in the APP/PS1 animals. No difference in brain uptake were observed for 99mTc-ni3A or DTPA(111In)-pa2H, which lacked additional peptide tags to investigate further clinical applicability. In vivo specificity for AÎČ was confirmed for both fluorescently labeled VHH, where pa2H remained readily detectable for 24 hours or more after injection. Furthermore, both VHH showed affinity for parenchymal and vascular deposits, this in contrast to human tissue, where ni3A specifically targeted only vascular AÎČ. Despite a brain uptake that is as yet too low for in vivo imaging, this study provides evidence that VHH detect AÎČ deposits in vivo, with high selectivity and favorable in vivo characteristics, making them promising tools for further development as diagnostic agents for the distinctive detection of different AÎČ deposits

    Low anti-staphylococcal IgG responses in granulomatosis with polyangiitis patients despite long-term Staphylococcus aureus exposure

    Get PDF
    Chronic nasal carriage of the bacterium Staphylococcus aureus in patients with the autoimmune disease granulomatosis with polyangiitis (GPA) is a risk factor for disease relapse. To date, it was neither known whether GPA patients show similar humoral immune responses to S. aureus as healthy carriers, nor whether specific S. aureus types are associated with GPA. Therefore, this study was aimed at assessing humoral immune responses of GPA patients against S. aureus antigens in relation to the genetic diversity of their nasal S. aureus isolates. A retrospective cohort study was conducted, including 85 GPA patients and 18 healthy controls (HC). Humoral immune responses against S. aureus were investigated by determining serum IgG levels against 59 S. aureus antigens. Unexpectedly, patient sera contained lower anti-staphylococcal IgG levels than sera from HC, regardless of the patients' treatment, while total IgG levels were similar or higher. Furthermore, 210 S. aureus isolates obtained from GPA patients were characterized by different typing approaches. This showed that the S. aureus population of GPA patients is highly diverse and mirrors the general S. aureus population. Our combined findings imply that GPA patients are less capable of mounting a potentially protective antibody response to S. aureus than healthy individuals

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Insights into the origins, molecular characteristics and distribution of iron-binding ligands in the Arctic Ocean

    No full text
    Dissolved lignin phenols, chromophoric dissolved organic matter (DOM), and in situ fluorescence were determined in waters of the Laptev Sea and major Arctic basins, and they were compared with dissolved iron (dFe) distributions to elucidate the sources, molecular characteristics and distributions of iron-binding ligands in the Arctic Ocean. In the Transpolar Drift region (TPD), concentrations of dFe were positively correlated with concentrations of lignin phenols and multiple optical proxies of DOM composition and source. Strong relationships between dFe and visible and ultraviolet wavelength fluorescent DOM indicated that vascular plant and algal-derived DOM contributed to the dFe-ligand pool. These observations are consistent with previous studies suggesting the association of dFe with humic terrigenous and marine organic ligands. The primary sources of iron-binding ligands appear to be the riverine discharge of terrigenous DOM, marine organic matter produced on the shelves, and degradation products of plankton-derived organic matter in the shelf sediments. A stronger relationship between dFe and visible wavelength CDOM fluorescence than with lignin phenols suggested the presence of multiple terrigenous ligands, such as aromatic tannins. The aromatic nature of these terrigenous ligands was indicated by a strong relationship between dFe and the absorption coefficient at 254 nm. A strong negative correlation between the p-hydroxyl to vanillyl lignin phenols ratio and dissolved iron concentrations indicated recently-discharged terrigenous DOM (tDOM) was an important source of iron-binding ligands. Given the strong relationships of marine and terrigenous DOM with dissolved iron, iron-binding functional groups appear to occur in diverse molecules of multiple sources. Examples of such iron-binding functional groups included catechols and carboxylates found in lignins and tannins of terrigenous origins and carboxyl-rich alicyclic molecules (CRAM) of terrigenous and marine origins. The observed dFe distributions in the Arctic Ocean could not be explained by the presence of a single ligand type, but rather by a potpourri of ligand molecules of varying concentrations and binding strengths. This molecular diversity of ligands and associated binding strengths ultimately controls the distribution and transport of dFe in the Arctic Ocean and beyond

    <sup>234</sup>Th in surface waters: Distribution of particle export flux across the Antarctic Circumpolar Current and in the Weddell Sea during the GEOTRACES expedition ZERO and DRAKE

    No full text
    As part of the GEOTRACES Polarstern expedition ANTXXIV/3 (ZERO and DRAKE) we have measured the vertical distribution of Th-234 on sections through the Antarctic Circumpolar Current along the zero meridian and in Drake Passage and on an EW section through the Weddell Sea. Steady state export fluxes of Th-234 from the upper 100 m, derived from the depletion of Th-234 with respect to its parent U-238, ranged from 621 +/- 105 to 1773 +/- 90 dpm m(-2) d(-1). This Th-234 flux was converted into an export flux of organic carbon ranging from 3.1 to 13.2 mmol C m(-2) d(-1) (2.1-9.0 mmol C m(-2) d(-1)) using POC/Th-234 ratio of bulk (respectively > 50 mu m) suspended particles at the export depth (100 m). Non-steady state fluxes assuming zero flux under ice cover were up to 23% higher. In addition, particulate and dissolved Th-234 were measured underway in high resolution in the surface water with a semi-automated procedure. Particulate Th-234 in surface waters is inversely correlated with light transmission and pCO(2) and positively with fluorescence and optical backscatter and is interpreted as a proxy for algal biomass. High resolution underway mapping of particulate and dissolved Th-234 in surface water shows clearly where trace elements are absorbed by plankton and where they are exported to depth. Quantitative determination of the export flux requires the full Th-234 profile since surface depletion and export flux become decoupled through changes in wind mixed layer depth and in contribution to export from subsurface layers.<br>In a zone of very low algal abundance (54-58 degrees S at the zero meridian), confirmed by satellite Chl-a data, the lowest carbon export of the ACC was observed, allowing Fe and Mn to maintain their highest surface concentrations.<br>An ice-edge bloom that had developed in December/January in the zone 60-65 degrees S as studied during the previous leg had caused a high export flux at 64.5 degrees S when we visited the area 2 months later (February/March). The ice-edge bloom had then shifted south to 65-69 degrees S evident from uptake of CO2 and dissolved Fe, Mn and Th-234, without causing export yet. In this way, the parallel analysis of Th-234 can help to explain the scavenging behavior of other trace elements

    Blood clearance.

    No full text
    <p>These graphs represent the blood half lives of tagged <sup>99m</sup>Tc-ni3A and -pa2H (<b>A</b>), and untagged DTPA(<sup>111</sup>In)-pa2H (<b>B</b>) in APP/PS1 mice and wildtype littermates. Data is shown as percentage of injected dose per gram of blood (%ID/g) over time. Based upon this plot the clearance is suggested to respectively consist of a fast and a slow phase, or only a single phase.</p

    Blood distribution of <sup>99m</sup>Tc-pa2H.

    No full text
    <p>At different time point after bolus injection of <sup>99m</sup>Tc-pa2H blood collected from the tail vein of 12–14 month old APP/PS1 mice or wildtype littermates. Separated into the cell pellet and plasma, samples were counted for radioactivity. Fractions are expressed in percentage of total activity at that time point. No significant differences were calculated using a student <i>t</i>-test (<i>p</i><0.05).</p
    corecore