444 research outputs found

    Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16.

    Get PDF
    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated

    Results from the first use of low radioactivity argon in a dark matter search

    Get PDF
    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.

    Adherence to nucleos(t)ide analogue therapies for chronic Hepatitis B infection: A systematic review and meta-analysis

    Get PDF
    Successful treatment outcomes for chronic hepatitis B virus (HBV) infection requires high levels of adherence to treatment. We searched three databases and abstracts from two conferences up to January 2018 for studies reporting the proportion of patients who were adherent to HBV antiviral therapy and pooled data using random effects meta‐analysis. We included 30 studies, providing data for 23,823 patients. Overall, adherence to treatment was 74.6% (95% confidence interval [CI] 67.1%‐82.1%). Adherence was similar in high‐income settings (75.1%; 95% CI, 65.4%‐85.0%) and in low‐income and middle‐income settings (72.9%; 95% CI, 57.8%‐88.0%). Reported barriers to adherence included forgetting, limited understanding of the importance of adherence, and change to routine. Conclusion: There is a need to reinforce assessment and reporting of adherence as a routine part of HBV care and to assess the extent to which evidence‐based interventions to improve adherence to medication for human immunodeficiency virus [HIV] and other chronic diseases are effective for HBV infection

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0νββ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of \sim0.1 count /(FWHM\cdott\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ{\nu}{\beta}{\beta} signal region of all 0νββ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0νββ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017

    Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome.

    Get PDF
    Acetaminophen overdose is the leading cause of acute liver failure. One dose of 10-15 g causes severe liver damage in humans, whereas repeated exposure to acetaminophen in humans and animal models results in autoprotection. Insight of this process is limited to select proteins implicated in acetaminophen toxicity and cellular defence. Here we investigate hepatic adaptation to acetaminophen toxicity from a whole proteome perspective, using quantitative mass spectrometry. In a rat model, we show the response to acetaminophen involves the expression of 30% of all proteins detected in the liver. Genetic ablation of a master regulator of cellular defence, NFE2L2, has little effect, suggesting redundancy in the regulation of adaptation. We show that adaptation to acetaminophen has a spatial component, involving a shift in regionalisation of CYP2E1, which may prevent toxicity thresholds being reached. These data reveal unexpected complexity and dynamic behaviour in the biological response to drug-induced liver injury

    Optogenetic acidification of synaptic vesicles and lysosomes

    Get PDF
    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes

    Protein Function Assignment through Mining Cross-Species Protein-Protein Interactions

    Get PDF
    Background: As we move into the post genome-sequencing era, an immediate challenge is how to make best use of the large amount of high-throughput experimental data to assign functions to currently uncharacterized proteins. We here describe CSIDOP, a new method for protein function assignment based on shared interacting domain patterns extracted from cross-species protein-protein interaction data. Methodology/Principal Findings: The proposed method is assessed both biologically and statistically over the genome of H. sapiens. The CSIDOP method is capable of making protein function prediction with accuracy of 95.42 % using 2,972 gene ontology (GO) functional categories. In addition, we are able to assign novel functional annotations for 181 previously uncharacterized proteins in H. sapiens. Furthermore, we demonstrate that for proteins that are characterized by GO, the CSIDOP may predict extra functions. This is attractive as a protein normally executes a variety of functions in different processes and its current GO annotation may be incomplete. Conclusions/Significance: It can be shown through experimental results that the CSIDOP method is reliable and practical in use. The method will continue to improve as more high quality interaction data becomes available and is readily scalable t

    The Potential Role of Metalloproteinases in Neurogenesis in the Gerbil Hippocampus Following Global Forebrain Ischemia

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. PRINCIPAL FINDINGS: We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. CONCLUSION: Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus

    The ICARUS Experiment, A Second-Generation Proton Decay Experiment and Neutrino Observatory at the Gran Sasso Laboratory

    Get PDF
    The final phase of the ICARUS physics program requires a sensitive mass of liquid Argon of 5000 tons or more. The T600 detector stands today as the first living proof that such large detector can be built and that liquid Argon imaging technology can be implemented on such large scales. After the successful completion of a series of technical tests to be performed at the assembly hall in Pavia, the T600 detector will be ready to be transported into the LNGS tunnel. The operation of the T600 at the LNGS will allow us (1) to develop the local infrastructure needed to operate our large detector (2) to start the handling of the underground liquid argon technology (3) to study the local background (4) to start the data taking with an initial liquid argon mass that will reach in a 5-6 year program the multi-kton goal. The T600 is to be considered as the first milestone on the road towards a total sensitive mass of 5000 tons: it is the first piece of the detector to be complemented by further modules of appropriate size and dimensions, in order to reach in a most efficient and rapid way the final design mass. In this document, we describe the physics program that will be accomplished within the first phase of the program
    corecore