1,768 research outputs found

    Test genéticos para la detección de la degeneración macular asociada a la edad

    Get PDF
    DMAE; Envelliment; Avaluació de tecnologies sanitàries; Macular degeneration; Aging; Evaluation of health technologies; Degeneración macular; Envejecimiento; Evaluación de tecnologías sanitariasLa degeneració macular associada a l'edat (DMAE) és la principal causa de ceguesa legal en el món occidental en persones majors de 55 anys. A Espanya, l'any 2012 es va estimar en un total de 205.687 els espanyols de origen caucàsic amb DMAE de tipus neovascular. La DMAE és una malaltia complexa influenciada per factors genètics i ambientals. S'han descrit nombroses regions genòmiques i una varietat de gens candidats que han mostrat tenir un impacte en la susceptibilitat de la DMAE. Actualment, hi ha diversos mètodes de predicció genètics de risc que després d'analitzar alguns marcadors genètics considerats d'interès en una mostra d'ADN i mitjançant el càlcul de probabilitats, determinen el risc genètic d'un individu de patir DMAE. Objectiu: Analitzar l'evidència científica disponible en relació amb els mètodes de predicció de risc o tests genètics de detecció de risc de DMAE neovascular en població espanyola d'origen caucàsic. Mètode: Es va realitzar una revisió sistemàtica de l'evidència científica fins al novembre de 2013 a les principals bases de dades biomèdiques. Es van seleccionar metanàlisis, assaigs clínics i models genètics de predicció de risc. Es va valorar la qualitat metodològica dels estudis inclosos segons els criteris de la Scottish Intercollegiate Guidelines Network i Human Genome Epidemiology Network. Es va realitzar una síntesi de l'evidència científica

    Identification of candidate pelagic marine protected areas through a seabird seasonal-, multispecific- and extinction risk-based approach

    Get PDF
    With increasing pressure on the oceans from environmental change, there has been a global call for improved protection of marine ecosystems through the implementation of marine protected areas (MPAs). Here, we used species distribution modelling (SDM) of tracking data from 14 seabird species to identify key marine areas in the southwest Atlantic Ocean, valuing areas based on seabird species occurrence, seasonality and extinction risk. We also compared overlaps between the outputs generated by the SDM and layers representing important human threats (fishing intensity, ship density, plastic and oil pollution, ocean acidification), and calculated loss in conservation value using fishing and ship density as cost layers. The key marine areas were located on the southern Patagonian Shelf, overlapping extensively with areas of high fishing activity, and did not change seasonally, while seasonal areas were located off south and southeast Brazil and overlapped with areas of high plastic pollution and ocean acidification. Non-seasonal key areas were located off northeast Brazil on an area of high biodiversity, and with relatively low human impacts. We found support for the use of seasonal areas depending on the seabird assemblage used, because there was a loss in conservation value for the seasonal compared to the non-seasonal approach when using ‘cost’ layers. Our approach, accounting for seasonal changes in seabird assemblages and their risk of extinction, identified additional candidate areas for incorporation in the network of pelagic MPAs

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    ANTIOXIDANT AND HYPOGLYCEMIC EFFECTS OF WATERCRESS (NASTURTIUM OFFICINALE) EXTRACTS IN DIABETIC RATS

    Get PDF
    Background: Watercress is a semi-aquatic plant used in traditional medicine to treat various ailments, such as flu, cough, avitaminosis, and anorexia; it is also used as a diuretic and for hypoglycemia treatment in diabetes. In this study, we report the antioxidant and hypoglycemic activity of orally administered aqueous (WAQE), acetonic (WAE), and alcoholic (WOHE) watercress extracts. The effect of subchronic administration of watercress extracts on oxidative stress was also studied. Materials and Methods: WAQE, WAE, and WOHE were obtained and administered orally. Alloxan (200 mg/kg) and streptozotocin (60 mg/kg) were applied to induce hyperglycemia in male Wistar rats. Phenolic and flavonoid content, as well as antioxidant activity of the extracts were measured. The acute and subchronic effects (8 weeks) of WAQE were evaluated. The activity of antioxidant enzymes levels of malondialdehyde, hepatic enzyme markers in the serum, and renal function markers, were assessed. Histopathological evaluation of the pancreas, kidney, and liver was performed using hematoxylin-eosin staining. Results: Watercress extracts have high concentrations of phenols, polyphenols, and flavonoids, in addition to a very high antioxidant effect. The hypoglycemic effect of WAQE upon acute administration was 76.6% higher than that of insulin. When administered chronically, glucose levels were normalized on the third week up to the eighth week. Furthermore, the antioxidant enzymes and biochemical parameters improved. Conclusion: WAQE administration to diabetic rats reduced oxidative stress damage and decreased glucose levels. This study supports the use of this plant for the treatment of diabetes

    CoVITEST: A Fast and Reliable Method to Monitor Anti-SARS-CoV-2 Specific T Cells From Whole Blood

    Full text link
    Cellular and humoral immune responses are essential for COVID-19 recovery and protection against SARS-CoV-2 reinfection. To date, the evaluation of SARS-CoV-2 immune protection has mainly focused on antibody detection, generally disregarding the cellular response, or placing it in a secondary position. This phenomenon may be explained by the complex nature of the assays needed to analyze cellular immunity compared with the technically simple and automated detection of antibodies. Nevertheless, a large body of evidence supports the relevance of the T cell's role in protection against SARS-CoV-2, especially in vulnerable individuals with a weakened immune system (such as the population over 65 and patients with immunodeficiencies). Here we propose to use CoVITEST (Covid19 anti-Viral Immunity based on T cells for Evaluation in a Simple Test), a fast, affordable and accessible in-house assay that, together with a diagnostic matrix, allows us to determine those patients who might be protected with SARS-CoV-2-reactive T cells. The method was established using healthy SARS-CoV-2-naïve donors pre- and post-vaccination (n=30), and further validated with convalescent COVID-19 donors (n=51) in a side-by-side comparison with the gold standard IFN-? ELISpot. We demonstrated that our CoVITEST presented reliable and comparable results to those obtained with the ELISpot technique in a considerably shorter time (less than 8 hours). In conclusion, we present a simple but reliable assay to determine cellular immunity against SARS-CoV-2 that can be used routinely during this pandemic to monitor the immune status in vulnerable patients and thereby adjust their therapeutic approaches. This method might indeed help to optimize and improve decision-making protocols for re-vaccination against SARS-CoV-2, at least for some population subsets.Copyright © 2022 Egri, Olivé, Hernández-Rodríguez, Castro, De Guzman, Heredia, Segura, Fernandez, de Moner, Torradeflot, Ballús, Martinez, Vazquez, Costa, Dobaño, Mazza, Mazzotti, Pascal, Juan, González-Navarro and Calderón

    A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    Get PDF
    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome
    • …
    corecore