96 research outputs found

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Measuring what matters MOST: Validation of the Measure of Ovarian Symptoms and Treatment, a patient-reported outcome measure of symptom burden and impact of chemotherapy in recurrent ovarian cancer (ROC)

    Get PDF
    Purpose: Gynecologic Cancer Intergroup Symptom Benefit Study (GCIG-SBS) Stage 2 aimed to review, revise, and validate a patient-reported outcome measure (PROM), the Measure of Ovarian Symptoms and Treatment concerns (MOST), developed in GCIG-SBS Stage 1 (MOSTv1, 35 items), and document recurrent ovarian cancer (ROC) symptom burden and benefit. Methods: GCIG-SBS Stage 2 recruited patients with platinum-resistant/refractory ROC (PRR-ROC) or potentially platinum-sensitive ROC with ≥ 3 lines of prior chemotherapy (PPS-ROC ≥ 3). Patients completed MOSTv1, QLQ-C30, QLQ-OV28, and FACT-O/FOSI at baseline and before cycle 3 of chemotherapy (pre-C3), and global assessments of change (MOST-Change) pre-C3. Clinicians rated patients’ cancer-related symptoms, performance status, and adverse events. Convergent and divergent validity (Spearman’s correlations), discriminative validity (effect sizes between groups classified by clinician-rated characteristics), and responsiveness (paired t tests in patients expected to experience clinically meaningful change) were assessed. Results: Of 948 recruits, 903 completed PROMs at baseline and 685 pre-C3. Baseline symptom burden was substantial for PRR-ROC and PPS-ROC ≥ 3. MOSTv2 has 24 items and five multi-item scales: abdominal symptoms (MOST-Abdo), disease or treatment-related symptoms (MOST-DorT), chemotherapy-related symptoms (MOST-Chemo), psychological symptoms (MOST-Psych), and MOST-Well-being. Correlations confirmed concurrent and divergent validity. Discriminative validity was confirmed by effect sizes that conformed with a priori hypotheses. MOST-Abdo was responsive to improvements in abdominal symptoms and MOST-Chemo detected the adverse effects of chemotherapy. Conclusions: The MOSTv2 validly quantifies patient-reported symptom burden, adverse effects, and symptom benefit in ROC, and as such is fit-for-purpose for clinical trials of palliative chemotherapy in ROC. Further research is required to assess test–retest reliability

    Validation of the modified Glasgow Prognostic Score (mGPS) in recurrent ovarian cancer (ROC) – Analysis of patients enrolled in the GCIG Symptom Benefit Study (SBS)

    Get PDF
    Background: Modified Glasgow Prognostic Score (mGPS) is predictive of survival in many advanced cancers, but has not been evaluated in recurrent ovarian cancer (ROC). The aim was to determine validity of mGPS in ROC, investigate its associations with health related quality of life (HRQL) and ECOG performance status (PS). / Methods: mGPS is based on serum C reactive protein (CRP) and albumin, with scores ranging from 0 (least) to 2 (most). HRQL was measured with EORTC QLQ C-30 and OV-28. χ2 tests for trend were used to examine the relationship between HRQL, PS and mGPS. Cox proportional hazards regression was used to assess associations between mGPS, HRQL, clinicopathological factors, and overall survival (OS). / Results: Inflammatory markers were available in 516 of 948 patients in GCIG SBS. 200(39%) had potentially platinum sensitive ROC with ≥ 3 lines of chemotherapy, 316(61%) had platinum resistant ROC. 282(55%), 123(24%), 111(22%) had mGPS of 0, 1, 2, respectively. Median OS (months) was 18.1, 9.6, and 6.6 for mGPS 0, 1, and 2 respectively. mGPS was an independent predictor of OS after adjusting for PS and platinum sensitivity (p < 0.001). mGPS remained a predictor of OS after adjusting for physical function, role function, global health status, abdominal/GI symptoms, and multiple clinicopathologic factors (p = 0.02). Worse PS and higher mGPS were associated with poorer HRQL (p < 0.001). Higher mGPS was associated with worse HRQL, independent of PS. / Conclusion: The mGPS is an independent predictor of OS in ROC after adjusting for HRQL and clinicopathological factors. Higher mGPS is associated with worse HRQL independent of PS. mGPS is simple, inexpensive and may be suitable for clinical practice, clinical trial patient selection and stratification

    Omega-3 Fatty Acid Deficiency during Brain Maturation Reduces Neuronal and Behavioral Plasticity in Adulthood

    Get PDF
    Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks. Results showed that the n-3 deficiency increased parameters of anxiety-like behavior using open field and elevated plus maze tests in the male offspring. Behavioral changes were accompanied by a level reduction in the anxiolytic-related neuropeptide Y-1 receptor, and an increase in the anxiogenic-related glucocorticoid receptor in the cognitive related frontal cortex, hypothalamus and hippocampus. The n-3 deficiency reduced brain levels of docosahexaenoic acid (DHA) and increased the ratio n-6/n-3 assessed by gas chromatography. The n-3 deficiency reduced the levels of BDNF and signaling through the BDNF receptor TrkB, in proportion to brain DHA levels, and reduced the activation of the BDNF-related signaling molecule CREB in selected brain regions. The n-3 deficiency also disrupted the insulin signaling pathways as evidenced by changes in insulin receptor (IR) and insulin receptor substrate (IRS). DHA deficiency during brain maturation reduces plasticity and compromises brain function in adulthood. Adequate levels of dietary DHA seem crucial for building long-term neuronal resilience for optimal brain performance and aiding in the battle against neurological disorders

    Metabolic Consequences and Vulnerability to Diet-Induced Obesity in Male Mice under Chronic Social Stress

    Get PDF
    Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However, relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet, dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the metabolic consequences of chronic stress exposure and associated psychopathologies

    A kilonova as the electromagnetic counterpart to a gravitational-wave source

    Get PDF
    Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2,3,4,5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of −1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90–140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process element

    SN 2018ijp: the explosion of a stripped-envelope star within a dense H-rich shell?

    Get PDF
    In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and an later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium

    Microstructural Abnormalities in Subcortical Reward Circuitry of Subjects with Major Depressive Disorder

    Get PDF
    Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB).We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression

    Rac and Rho GTPases in cancer cell motility control

    Get PDF
    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination
    corecore