809 research outputs found
Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI
Time-resolved 3D velocity-encoded MR imaging with velocity encoding in three directions (4D Flow) has emerged as a novel MR acquisition technique providing detailed information on flow in the cardiovascular system. In contrast to other clinically available imaging techniques such as echo-Doppler, 4D Flow MRI provides the 3D Flow velocity field within a volumetric region of interest over the cardiac cycle. This work reviews the most recent advances in the development and application of dedicated image analysis techniques for the assessment of intra-cardiac flow features from 4D Flow MRI.Novel image analysis techniques have been developed for extraction of relevant intra-cardiac flow features from 4D Flow MRI, which have been successfully applied in various patient cohorts and volunteer studies. Disturbed flow patterns have been linked with valvular abnormalities and ventricular dysfunction. Recent technical advances have resulted in reduced scan times and improvements in image quality, increasing the potential clinical applicability of 4D Flow MRI.4D Flow MRI provides unique capabilities for 3D visualization and quantification of intra-cardiac blood flow. Contemporary knowledge on 4D Flow MRI shows promise for further exploration of the potential use of the technique in research and clinical applications
Deriving a mutation index of carcinogenicity using protein structure and protein interfaces
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
Looking inside the spiky bits : a critical review and conceptualisation of entrepreneurial ecosystems
The authors wish to thank the Organisational for Economic Cooperation and Development (OECD) for funding their original research on entrepreneurial ecosystems.The concept of entrepreneurial ecosystems has quickly established itself as one of the latest ‘fads’ in entrepreneurship research. At face value, this kind of systemic approach to entrepreneurship offers a new and distinctive path for scholars and policy makers to help understand and foster growth-oriented entrepreneurship. However, its lack of specification and conceptual limitations has undoubtedly hindered our understanding of these complex organisms. Indeed, the rapid adoption of the concept has tended to overlook the heterogeneous nature of ecosystems. This paper provides a critical review and conceptualisation of the ecosystems concept: it unpacks the dynamics of the concept; outlines its theoretical limitations; measurement approaches and use in policy-making. It sets out a preliminary taxonomy of different archetypal ecosystems. The paper concludes that entrepreneurial ecosystems are a highly variegated, multi-actor and multi-scalar phenomenon, requiring bespoke policy interventions.Publisher PDFPeer reviewe
Microbial Co-occurrence Relationships in the Human Microbiome
The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.National Institutes of Health (U.S.) (grant CA139193)Fonds Wetenschappelijk Onderzoek – VlaanderenJuvenile Diabetes Research Foundation InternationalNational Institutes of Health (U.S.) (grant NIH U54HG004969)Crohn's and Colitis Foundation of AmericaNational Science Foundation (U.S.) (NSF DBI-1053486)United States. Army Research Office (ARO W911NF-11-1-0473)National Institutes of Health (U.S.) (grant NIH 1R01HG005969
Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis
The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.peer-reviewe
Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria
Most free-living planktonic cells are streamlined and in spite of their limitations in functional flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to marine and freshwater habitats. Our results suggest that the successful leap from marine to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and a rewiring of the central metabolism. Examples for these are C1 and methylated compounds degradation pathways, the Entner–Doudouroff pathway, the glyoxylate shunt and anapleuretic carbon fixation being absent from the freshwater genomes. Evolutionary reconstructions further suggest that the metabolic modules making up these important freshwater metabolic traits were already present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives, suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and transporters toward locally available organic substrates is linked to the formation of subgroups within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an adaptive phenotype.This work was supported by the Swedish Research Council (Grant Numbers 2012-4592 to AE and 2012-3892 to SB) and the Communiy Sequencing Programme of the US Department of Energy Joint Genome Institute. The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231
Regulation and splicing of scavenger receptor class B type I in human macrophages and atherosclerotic plaques
BACKGROUND: The protective role of high-density lipoprotein (HDL) in the cardiovascular system is related to its role in the reverse transport of cholesterol from the arterial wall to the liver for subsequent excretion via the bile. Scavenger receptor class B type I (SR-BI) binds HDL and mediates selective uptake of cholesterol ester and cellular efflux of cholesterol to HDL. The role of SR-BI in atherosclerosis has been well established in murine models but it remains unclear whether SR-BI plays an equally important role in atherosclerosis in humans. The aim of this study was to investigate the expression of SR-BI and its isoforms in human macrophages and atherosclerotic plaques. METHODS: The effect of hypoxia and minimally modified low-density lipoprotein (mmLDL), two proatherogenic stimuli, on SR-BI expression was studied in human monocyte-derived macrophages from healthy subjects using real-time PCR. In addition, SR-BI expression was determined in macrophages obtained from subjects with atherosclerosis (n = 15) and healthy controls (n = 15). Expression of SR-BI isoforms was characterized in human atherosclerotic plaques and macrophages using RT-PCR and DNA sequencing. RESULTS: SR-BI expression was decreased in macrophages after hypoxia (p < 0.005). In contrast, SR-BI expression was increased by exposure to mmLDL (p < 0.05). There was no difference in SR-BI expression in macrophages from patients with atherosclerosis compared to controls. In both groups, SR-BI expression was increased by exposure to mmLDL (p < 0.05). Transcripts corresponding to SR-BI and SR-BII were detected in macrophages. In addition, a third isoform, referred to as SR-BIII, was discovered. All three isoforms were also expressed in human atherosclerotic plaque. Compared to the other isoforms, the novel SR-BIII isoform was predicted to have a unique intracellular C-terminal domain containing 53 amino acids. CONCLUSION: We conclude that SR-BI is regulated by proatherogenic stimuli in humans. However, we found no differences between subjects with atherosclerosis and healthy controls. This indicates that altered SR-BI expression is not a common cause of atherosclerosis. In addition, we identified SR-BIII as a novel isoform expressed in human macrophages and in human atherosclerotic plaques
Optimizing outcomes for patients with severe haemophilia A
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73864/1/j.1365-2516.2007.01552.x.pd
Mutations in the ELANE Gene are Associated with Development of Periodontitis in Patients with Severe Congenital Neutropenia
# The Author(s) 2011. This article is published with open access at Springerlink.com Background Patients with severe congenital neutropenia (SCN) often develop periodontitis despite standard medical and dental care. In light of previous findings that mutations in the neutrophil elastase gene, ELANE, are associated with more severe neutropenic phenotypes, we hypothesized an association between the genotype of SCN and development of periodontitis. Methods Fourteen Swedish patients with SCN or cyclic neutropenia harboring different genetic backgrounds were recruited for periodontal examination. Peripheral blood, gingival crevicular fluid (GCF), and subgingival bacterial Thomas Modéer and Katrin Pütsep have contributed equally to the study
Salvage arthrodesis for failed total ankle arthroplasty: Clinical outcome and influence of method of fixation on union rate in 18 ankles followed for 3–12 years
- …
