400 research outputs found

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    Significant association of SREBP-2 genetic polymorphisms with avascular necrosis in the Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that steroid usage and alcohol abuse are major etiological factors in the development of avascular necrosis (AVN), a bone disease that produces osteonecrosis of the femoral head. The facilitation of fat biosynthesis by steroids and alcohol disrupts the blood supply into the femoral head. <it>SREBP-2 </it>plays a central role in the maintenance of lipid homeostasis through stimulating expression of genes associated with cholesterol biosynthetic pathways. The aim of this study was to examine the association between the polymorphisms of the <it>SREBP-2 </it>gene and AVN susceptibility in the Korean population.</p> <p>Methods</p> <p>Four single nucleotide polymorphisms (SNP) in the <it>SREBP-2 </it>gene, IVS1+8408 T>C (rs2267439), IVS3-342 G>T (rs2269657), IVS11+414 G>A (rs1052717) and IVS12-1667 G>A (rs2267443), were selected from public databases and genotyped in 443 AVN patients and 273 control subjects by using single-based extension (SBE) genotyping.</p> <p>Results</p> <p>The minor allele (C) frequency of rs2267439 showed a significant protective effect on AVN (P = 0.01, OR; 0.75, 95% CI; 0.604–0.935), and the genotype frequencies of this polymorphism were also different from the controls in all alternative analysis models (P range, 0.009–0.03, OR; 0.647–0.744). In contrast, rs1052717 and rs2267443 polymorphisms were significantly associated with AVN risk. Further analysis based on pathological etiology showed that the genotypes of rs2267439, rs1052717 and rs2267443 were also significantly associated with AVN susceptibility in each subgroup.</p> <p>Conclusion</p> <p>This study is the first report to evaluate the association between <it>SREBP-2 </it>gene polymorphisms and the susceptibility of AVN in the Korean population.</p

    Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck

    Get PDF
    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    Acute and rapid degradation of endogenous proteins by Trim-Away.

    Get PDF
    Protein depletion is a key approach to understanding the functions of a protein in a biological system. We recently developed the Trim-Away approach in order to rapidly degrade endogenous proteins without prior modification. Trim-Away is based on the ubiquitin ligase and Fc receptor TRIM21, which recognizes antibody-bound proteins and targets them for degradation by the proteasome. In a typical Trim-Away experiment, protein degradation is achieved in three steps: first, introduction of an antibody against the target protein; second, recruitment of endogenous or exogenous/overexpressed TRIM21 to the antibody-bound target protein; and third, proteasome-mediated degradation of the target protein, antibody and TRIM21 complex. Protein degradation by Trim-Away is acute and rapid, with half-lives of ~10-20 min. The major advantages of Trim-Away over other protein degradation methods are that it can be applied to any endogenous protein without prior modification; that it uses conventional antibodies that are widely available; and that it can be applied to a wide range of cell types, including nondividing primary human cells, for which other loss-of-function assays are challenging. In this protocol, we describe the detailed procedures for antibody preparation and delivery in mouse oocytes and cultured cells via microinjection and electroporation. In addition, we provide recommendations for antibody selection and validation, and for the generation of TRIM21-overexpressing cell lines for cases in which endogenous TRIM21 is limited. A typical Trim-Away experiment takes just a few hours.The research leading to these results received financial support from the Medical Research Council (MC_U105192711 and MC_U105181010), the Max Planck Society, the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 241548, European Research Council (ERC) Starting Grant no. 337415 and a Wellcome Trust Investigator Award

    TGA2 signaling in response to reactive electrophile species is not dependent on cysteine modification of TGA2

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Reactive electrophile species (RES), including prostaglandins, phytoprostanes and 12-oxo phytodienoic acid (OPDA), activate detoxification responses in plants and animals. However, the pathways leading to the activation of defense reactions related to abiotic or biotic stress as a function of RES formation, accumulation or treatment are poorly understood in plants. Here, the thiol-modification of proteins, including the RES-activated basic region/leucine zipper transcription factor TGA2, was studied. TGA2 contains a single cysteine residue (Cys186) that was covalently modified by reactive cyclopentenones but not required for induction of detoxification genes in response to OPDA or prostaglandin A1. Activation of the glutathione-S-transferase 6 (GST6) promoter was responsive to cyclopentenones but not to unreactive cyclopentanones, including jasmonic acid suggesting that thiol reactivity of RES is important to activate the TGA2-dependent signaling pathway resulting in GST6 activation We show that RES modify thiols in numerous proteins in vivo, however, thiol reactivity alone appears not to be sufficient for biological activity as demonstrated by the failure of several membrane permeable thiol reactive reagents to activate the GST6 promoter.Peer reviewedFinal Published versio

    Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis

    Get PDF
    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses

    Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling.

    Get PDF
    Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection
    corecore