97 research outputs found

    CTIP2 Expression in Human Head and Neck Squamous Cell Carcinoma Is Linked to Poorly Differentiated Tumor Status

    Get PDF
    We have demonstrated earlier that CTIP2 is highly expressed in mouse skin during embryogenesis and in adulthood. CTIP2 mutant mice die at birth with epidermal differentiation defects and a compromised epidermal permeability barrier suggesting its role in skin development and/or homeostasis. CTIP2 has also been suggested to function as tumor suppressor in cells, and several reports have described a link between chromosomal rearrangements of CTIP2 and human T cell acute lymphoblast leukemia (T-ALL). The aim of the present study was to look into the pattern of CTIP2 expression in Head and Neck Squamous Cell Carcinoma (HNSCC).In the present study, we analyzed CTIP2 expression in human HNSCC cell lines by western blotting, in paraffin embedded archival specimens by immunohistochemistry (IHC), and in cDNA samples of human HNSCC by qRT-PCR. Elevated levels of CTIP2 protein was detected in several HNSCC cell lines. CTIP2 staining was mainly detected in the basal layer of the head and neck normal epithelium. CTIP2 expression was found to be significantly elevated in HNSCC (p<0.01), and increase in CTIP2 expression was associated with poorly differentiated tumor status. Nuclear co-localization of CTIP2 protein and cancer stem cell (CSC) marker BMI1 was observed in most, if not all of the cells expressing BMI1 in moderately and poorly differentiated tumors.We report for the first time expression of transcriptional regulator CTIP2 in normal human head and neck epithelia. A statistically significant increase in the expression of CTIP2 was detected in the poorly differentiated samples of the human head and neck tumors. Actual CTIP2, rather than the long form of CTIP2 (CTIP2(L)) was found to be more relevant to the differentiation state of the tumors. Results demonstrated existence of distinct subsets of cancer cells, which express CTIP2 and underscores the use of CTIP2 and BMI1 co-labeling to distinguish tumor initiating cells or cancer stem cells (CSCs) from surrounding cancer cells

    Heterotic Bundles on Calabi-Yau Manifolds with Small Picard Number

    Get PDF
    We undertake a systematic scan of vector bundles over spaces from the largest database of known Calabi-Yau three-folds, in the context of heterotic string compactification. Specifically, we construct positive rank five monad bundles over Calabi-Yau hypersurfaces in toric varieties, with the number of Kahler moduli equal to one, two, and three and extract physically interesting models. We select models which can lead to three families of matter after dividing by a freely-acting discrete symmetry and including Wilson lines. About 2000 such models on two manifolds are found.Comment: 26 pages, 1 figur

    Computing Brane and Flux Superpotentials in F-theory Compactifications

    Get PDF
    In four-dimensional F-theory compactifications with N=1 supersymmetry the fields describing the dynamics of space-time filling 7-branes are part of the complex structure moduli space of the internal Calabi-Yau fourfold. We explicitly compute the flux superpotential in F-theory depending on all complex structure moduli, including the 7-brane deformations and the field corresponding to the dilaton-axion. Since fluxes on the 7-branes induce 5-brane charge, a local limit allows to effectively match the F-theory results to a D5-brane in a non-compact Calabi-Yau threefold with threeform fluxes. We analyze the classical and instanton contributions to the F-theory superpotential using mirror symmetry for Calabi-Yau fourfolds. The F-theory compactifications under consideration also admit heterotic dual descriptions and we discuss the identification of the moduli in this non-perturbative duality.Comment: 75 pages, 1 figure; typos corrected, references adde

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-ÎşB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
    • …
    corecore