
ON MATRIX EXPONENTIAL APPROXIMATIONS OF
RUIN PROBABILITIES FOR THE CLASSIC AND
BROWNIAN PERTURBED CRAMÉR-LUNDBERG
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Abstract. Padé rational approximations are a very convenient
approximation tool, due to the easiness of obtaining them, as so-
lutions of linear systems. Not surprisingly, many matrix expo-
nential approximations used in applied probability are particular
cases of first and second order ”admissible Padé approximations”
of a Laplace transform, where admissible stands for nonnegative
in the case of a density, and for nonincreasing in the case of a ccdf
(survival function).

Our first contribution below is the observation that for Cramér-
Lundberg processes and Brownian perturbed Cramér-Lundberg
processes there are three distinct rationally approximations
of the Pollaczek-Khinchine transform, corresponding to ap-
proximating a) the claims transform, b) the stationary excess trans-
form, and c) the aggregate loss transform.

A second contribution is providing three new always admis-
sible second order approximations for the ruin probabilities
of the Cramér-Lundberg process with Brownian perturbation, one
of which reduces in the absence of perturbation to DeVylder’s ap-
proximation.

Our third contribution is a method for comparing the resulting
approximations, based on the concept of largest weak-admissibility
interval of the compounding/traffic intensity parameter ρ.

Keywords: Pollaczek-Khinchine formula; incomplete information;
matrix exponential distributions; Padé approximation; perturbed Cramér-
Lundberg process; DeVylder’s approximation

1. Introduction: The Pollaczek-Khinchine formula

We provide below approximations for the law of the supremum of
a Brownian perturbed Cramér-Lundberg risk processes Schmidli (1999)
defined by

X(t) = u+ ct−
Nλ(t)∑
i=1

Zi + σB(t),(1)
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where Zi, i ≥ 1 are i.i.d. random variables representing the claims,
Nλ(t) is an independent Poisson process with exponential inter-arrival
times of rate λ, and σB(t), σ > 0 is an independent Brownian pertur-
bation of mean 0 and variance σ2.

The power series expansion of the Laplace exponent/cumulant gen-
erating function/symbol κ(s) = log

(
Ees(X(1)−X(0))

)
is:

κ(s) = p s+
η2,σ

2
s2 +

∞∑
k=3

(−s)kλmk

k!
=
σ2s

2

(
c̃− λ̃ ̂̄F (s) + s

)
,(2)

where mk = E[Zk
i ] are the claim moments, where

p := c− λm1 = λm1θ > 0(3)

is the Levy drift/profit rate, η2,σ = λm2 + σ2, c̃ = c/σ
2

2
, λ̃ = λ/σ

2

2
,

and ̂̄F (s) denotes the Laplace transform of the survival function of the
claims.

Three objects of central interest in ruin theory are:

• The distribution of the maximal aggregate loss

L = max
0≤t<∞

Nλ(t)∑
i=1

Zi − ct− σB(t)(4)

(the negative of the all-time infimum of the process X started
from 0).
• The first passage time below 0:

T (u) := inf{t ≥ 0 : X(t) < 0}.
• The eventual ruin probability/survival function of L:

Ψ(u) = P [T (u) <∞] = P [L > u].(5)

The eventual ruin probability Ψ(u) is not identically one iff the Levy
drift/profit rate (3) is positive, which will be assumed from now on.

The Pollaczek-Khinchine formula. The maximal aggregate loss may
also be represented as a geometric compound sum (of ”ladders”), and
its Laplace transform is known as the Pollaczek-Khinchine formula –
see for example (Kyprianou, 2006). In the case of Brownian perturbed
processes, putting κ̃p(s) = σs

2
, this reads as:

Ψ̂(s) =
1

s
− κ′(0)

κ(s)

=
λ(m1 − ˆ̄F (s)) + κ̃p(s)

s(c− λ ˆ̄F (s) + κ̃p(s))
=

ρ(1− f̂e(s)) + κ̃p(s)

s(1− ρf̂e(s) + κ̃p(s))
,(6)
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where fe(x) and f̂e(s) denote the stationary excess density of the claims
and its Laplace transform.

Remark 1. The Renyi, DeVylder, Whitt, Ramsay, and Badescu &
Stanford approximations used in queueing and risk theory are all Padé
approximations of the Pollaczek-Khinchine transform (6).

Remark 2. Our paper is motivated by the observation that rational
approximation of this formula may be implemented either for the input
transform f̂Z(s), or for the stationary excess transform f̂e(s), or for

the final transform Ψ̂(s) § .
This is straightforward with Brownian perturbations, and could be

achieved as well with other perturbations, once some rational approxi-
mation method for k̃P (s) is selected.

Contents. Our paper starts with a review of matrix exponential
approximations in Section 2.

The classification in three types of Padé approximations of the Pollaczek-
Khinchine transform, for: a) the claims transform, b) the stationary
excess transform, and c) the aggregate loss transform is developped in
Section 3 – see Theorem 1, and illustrated by the classic approxima-
tions of Renyi, DeVylder and Ramsay.

A review of the Cramér-Lundberg process with Brownian pertur-
bation is provided in Section 4, and three new always admissible
second order approximations for its ruin probabilities are given in
Theorem 2, Section 5. One of these reduces when σ = 0 to DeVylder’s
approximation for the classic Cramér-Lundberg process – see Remark
9. Note that higher order approximations are not at all easy to get (by
any of the three methods), due to the difficulty of ensuring admissibil-
ity. These difficulty is illustrated by the sometimes admissible second
order approximations for the non-perturbed Cramér-Lundberg process
provided in Theorem 3.

One possible method for comparing the three approaches is to use
the observation that the final approximation for ruin probabilities can
be admissible (non-increasing) even when the claims density is not
nonnegative. This suggests the concept of weak-admissibility set I
of all values of the compounding/traffic intensity parameter ρ which
render the final approximation admissible – see Section 6– and allows

§Following Abate and Whitt (1996), we may say that the Pollaczek-Khinchine
formula is a composition of the ”stationary excess operator” fZ− > fe, and of
the ”geometric compounding operator”, applied successively to the input density
fZ(x), and one may use rational approximation at any step of this chain.
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us to compare the three approximations by the size of their weak-
admissibility set. We undertake this comparison for the classic Cramér-
Lundberg process with uniformly distributed claims in Section 6.

2. Matrix exponential approximations

Approximation by exponential polynomials. The calculation
of many quantities of interest in applied probability (ruin theory, queue-
ing, reliability, mathematical finance, etc.) is more convenient when the
input data have an ”exponential-polynomial” density of the form

f(t) =

{∑K
k=0wke

−ξkt ≥ 0, ∀t ≥ 0

0, ∀t < 0,
(7)

with ξk having non-negative real part, and ωk being polynomials.
When ωk are constants, the densities (7) are called generalized hyper-

exponential (GHE), the word generalized being a reference to the fact
that no assumption is made on the sign of ωk, except for the global non-
negativity of f(t). Allowing polynomials ωk(t) rather than constants is
however necessary in order to have a closed approximation space, since
the possible ”collision” of exponents requires including the derivatives
∂e−ξt

∂ξ
= te−ξt, ....

If f(t) is observed on an equally spaced sample, (7) may be viewed
as a hypothesis on the fact that the rank of increasing Hankel matrices
based on the data stabilizes at the value K + 1, cf. a theorem due to
Kronecker. The determination of the parameters ωk, ξk disregarding
the non-negativity constraint is the famous De Prony problem (Prony,
1795; Potts and Tasche, 2012; Andersson et al., 2011).

Admissible rational Laplace transform approximations. Equiv-
alently, (7) amounts to approximating the empirical Laplace transform
by a rational function

I−1

I∑
i=0

e−sXi ≈
∑n−1

i=0 ais
i∑n

i=0 bis
i
.(8)

Hence, in the Laplace domain, the problem is: find rational approx-
imations of a given Laplace transform, with admissible (nonnegative)
inverse.

The approximations (7)-(8) are known under various names: Dirich-
let polynomials (Martin and Shubov, 1993), exponential polynomials,
rational Laplace transform approximations (RLTA), and exponential
sums. In probability the name in use is ”matrix exponential func-
tions”, stressing the importance of the matrix parametrization (9).
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The matrix-exponential parametrization. Note that exponen-
tial polynomials are uniquely characterized by a minimal scalar ODE
with constant coefficients, and by initial conditions. Converting the
scalar ODE to a linear ODE system with constant coefficients yields
the parametrization (9).

Definition 1. PH (phase-type) and ME (matrix-exponential)
densities: a) A continuous density on [0,∞) is called of phase-type
PH(α, A) if

f(t) = αeAta,∀t ≥ 0⇔ f̂(s) = α(sI − A)−1a,(9)

with

(1) α a probability row vector,
(2) A a subgenerator matrix, satisfying Aij ≥ 0 for i 6= j, A1 ≤ 0,

and
(3) a = −A 1, 1 are column vectors.

These assumptions imply that f(t) is a density and so f(t) ≥ 0,∀t ≥
0.

b) When a representation (9) exists, but the components α, A,a are
not necessarily as in part a) (and thus f(t) ≥ 0,∀t ≥ 0 may not hold),
we will call f(t) a matrix exponential function.

c) A matrix exponential density is a matrix exponential function f(t)
defined by (9), but without any assumptions on the components α, A,a,
except that

f(t) ≥ 0, ∀t ≥ 0.

Moreover, the total mass is assumed to be less than one.
Equivalently, the ”survival/complementary cumulative function” F̄ (t) :∫∞

t
f(x)dx must have a representation

F̄ (t) = α etA1, t > 0, F̄ (t) nonincreasing.(10)

We will refer to both the case f(t) non-negative and F̄ (t) nonincreas-
ing as ”admissible”.

d) We say that a random variable X has a matrix exponential dis-
tribution iff it has a rational Laplace transform with numerator and
denominator of equal degree

E[e−sX ] = an + (1− an)

∑n−1
i=0 ais

i∑n
i=0 bis

i
(11)

(this representation puts in evidence that X must have an atom at 0
of mass an, and a continuous part with matrix exponential density of
mass 1− an).
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The set of matrix exponential distributions with degree of the de-
nominator in a simplified form of the Laplace transform n (McMillan
degree) will be denoted by MEn.

Matrix exponential densities on R+ (9) (or, equivalently, densities
with rational Laplace transform) have been at the center of research
in applied probability and engineering for a long while, starting maybe
with Erlang (Erlang, 1909; Neuts, 1981).

This is due to the fact that applied probability deals often with
”Markovian black boxes”, having as input the empirical measure of
observed data, and having complicated outputs. For example, the out-
put may consist of the density of a performance measure of interest,
obtainable by solving integro-differential equations. The assumption
that the theoretical density of the observed data is a combination of
exponentials (which are eigenfunctions of the derivative operator D)
may simplify the problem and render unnecessary the resolution of the
integro-differential equations.

The best known example is that of computing the survival function
of the maximum of a compound Poisson sum with a linear drift

Ψ(u) = P [max
t≥0

(Nλ(t)∑
k=1

Zk − ct
)
> u](12)

Note that (12) provides the ruin probability of a Cramér-Lundberg
process, and also the probability that the stationary waiting time in
the M/G/l queue with the same arrival process and service times dis-
tributed as the claim sizes is larger than u (Asmussen and Rolski, 1992,
(1.2)) (with c = 1).

When the density of the claims is an exponential polynomial, the
same will be true for Ψ(u):

Ψ(u) =
∑
k

Cke
−γku(13)

where γk are the roots of the Cramér Lundberg equation k(−s) = 0,
and Ck are the coefficients of the partial fractions decomposition of
(6). Note that when the roots γk are not distinct, the coefficients Ck
become polynomials.

The explicit formula (13) may be more parsimoniously described
and implemented using matrix exponential parametrizations (9) of the
input and output densities. Indeed, when the claims Zi have a phase-
type distribution of type (β, B), it holds that:

Ψ(u) = ρeu(B+bρ)1(14)
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where ρ = λ
c
β(−B)−1 is a row vector, and 1 = (1, 1, ..., 1)t, b = (−B)1

are column vectors (Asmussen and Rolski, 1992, (3.1)), (Avram and
Usabel, 2003, (10)).

Remark 3. Note that powerful generalizations of this formula are
available for obtaining the density of the ruin time for the Sparre-
Andersen model with PH claims (with inter-arrivals being an arbitrary
i.i.d. sequence) – see for example (?Frostig et al., 2012). Therefore,
quite difficult problems may be solved efficiently by providing a matrix
exponential approximation of the density of the data.

Remark 4. Numerically, the matrix exponential parametrization is in
line with replacing root finding by computing the eigenvalues of the com-
panion matrix. This is a ”symbolic-numeric” (i.e. an essentially error-
free) operation. Note also that matrix exponentiation may be achieved
symbolically, via the Cayley-Hamilton theorem or Putzer’s method.

Padé/moments approximations. Another attraction of matrix expo-
nential densities is that of providing simple density approximations in
the case of few data, when only some moments of the input distribu-
tion may be safely assumed to be known § . This is in line with the
venerable and easy implementable Padé approximation.

A yet another attraction is that of cases like that of retrial queues,
where the integro-differential equation is complicated enough to force
restricting to a few moments – see (Nobel and Tijms, 2006; Kim and
Kim, 2011, 2013).

Admissibility of Padé approximations. The admissibility of Padé
approximations is already non-trivial at second order. Let

f̂(s) =
a0 + a1s

b0 + b1s+ b2s2
=

a0(1 + as)

b0 + b1s+ b2s2

denote the second order Padé (1, 2) approximation of a transform f̂(s).
When f(x) is a density, we must have a0 = b0. Furthermore, as well
known and easy to check, a1 = b1−b0µ1, and the quadratic polynomial
b(s) in the denominator may be written in terms of the first three
moments as

b(s) = b0 + b1s+ b2s
2 =

 1 µ1 µ2

µ1 µ2 µ3

s2 −s 1

(15)

§with more data, using the empirical density as input is much more efficient than
using a few moments
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with ”Hankel” coefficients:

b2 = H2,3 = µ1µ3 − µ2
2, b1 = H1,3 = µ3 − µ1µ2, b0 = H1,2 = µ2 − µ2

1

When b0 > 0 (which holds in our case for nondeterministic claims),
such an approximation is admissible iff

(1) b2 > 0, the discriminant of the denominator is nonnegative and
both roots are negative, which requires b1 ≥ 2

√
b2b0,

(2) a := a1
a0

= b1
b0
− µ1 > 0,

(3) at least one of the roots of b(s) is bigger than −a, which requires
b(−a) ≤ 0 or (b(−a) > 0 and b′(−a) ≤ 0).

The domain where these conditions hold is D = {b̄2 > 0, b̄1 > 0} ∩
(D1 ∪ D2), where

D1 =

{
2b0
b1

+ µ1 ≤ b1
b0

4b2 ≤ b21
b0

D2 =

{
b0
b1

+ µ1 <
b1
b0
≤ 2b0

b1
+ µ1

b2 ≤
b0(b21−b20−b1µ1b0)

(b1−b0µ1)2

In terms of b̄i = bi
b0
, i = 1, 2 and a = ai

a0
> 0, the domain is:

D1 =

{
2 ≤ ab̄1

4b̄2 ≤ b̄2
1

D2 =

{
1 ≤ ab̄1 ≤ 2

a2b̄2 + 1 ≤ ab̄1

In terms of moments, one may apply (Telek and Heindl, 2002; Bobbio
et al., 2005){

(3µ̄2 − 2) + 2
√

(1− µ̄2)3 < µ̄3 ≤ cv = 2µ̄2 − 1 3
4
< µ̄2 < 1

µ̄3 > µ̄2
2 µ̄2 > 1

where µ̄i = µi
µi1

.

Admissibility of high order Padé approximations. The ”modified
Hankel” structure in (15) is in fact valid for any order. Higher or-
der Padé (and Chebyshev-Padé) approximations are thus quite easy to
get, but ensuring the non-negativity or monotonicity of their inverses
leads to complicated conditions. For order n ≥ 4, the geometry of the
corresponding admissibility domain is yet to be determined.

The first practical approximate tests for the non-negativity of high
order given exponential polynomial densities became available only re-
cently, with the command CheckMEPositiveDensity of the package BU-
Tools (Reinecke and Telek, 2013), and the package SOPE (Dumitrescu
et al., 2014).

Remark 5. The optimization package SOPE (Dumitrescu et al., 2014)
www.schur.pub.ro/sope allows replacing a non-admissible exponential
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polynomial with real exponents by the closest L2 admissible exponential
polynomial with the same exponents.

3. Three Padé approximations for the ruin probabilities
of the classic Cramér-Lundberg process

In this section, we make the apparently new observation that there
are three ways to construct Padé approximations for the Laplace trans-
form Ψ̂(s), depending on whether one imposes or not the known initial
conditions for Ψ(0) and Ψ′(0). The three resulting strategies are:

(1) classic Padé, using the first 2n ruin moments Ψ0 = m̃1

θ
, Ψ1 =

m̃2

2θ
+ ( m̃1

θ
)2, ...,Ψ2n−1. Alternatively, one may set up a system

for the Padé[n− 1, n] approximation.
For example, at n = 1, we find:

Ψ̂(s) =
1

s
− p

s(p+ λm2s/2− λm3s2/6 + ...)
=

λm2/2− λm3s/6 + ...

p+ λm2s/2− λm3s2/6 + ...
≈ a

s+ b

⇔ as(p+ λm2s/2− λm3s
2/6 + ...)

≈ (s+ b)(λm2s/2− λm3s
2/6 + ...)

⇔ ap = bλm2/2, am2/2 = m2/2− bm3/6

⇔ a =
3λm2

2

3λm2
2 + 2pm3

, b =
6pm2

3λm2
2 + 2pm3

This yields the famous De Vylder approximation

Ψ(x) ≈ ae−bx(16)

It works well for large x (Grandell, 2000), but doesn’t fit the
known values of Ψ(0),Ψ′(0).

Since we are approximating the survival function of L which
is representable as a geometric compound sum, we will call this
approach the geometric compound approximation.

(2) two point Padé, using the first 2n−1 moments Ψk, k = 0, 1, ..., 2n−
2 plus the condition Ψ(0) = ρ. This is equivalent to using the

stationary excess moments m̃k, k = 0, 1, ..., 2n− 1 of f̂e(s) – see
Theorem 1 below– and will be called stationary excess approx-
imation.

(3) two point Padé, using the first 2n−2 moments Ψk =
∫∞

0
xkΨ(x)dx, k =

0, 1, ..., 2n−3 plus the two conditions Ψ(0) = ρ,Ψ′(0) = −ρ(1−ρ)
m1

.
This is equivalent to fitting the claims momentsmk, k = 0, 1, ..., 2n−
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1 – see Theorem 1 below, and will be called input approxima-
tion.

Theorem 1. Three Padé approximations of ruin probabilities
for the Cramér-Lundberg process.

a) The stationary excess approximation. Fitting the first 2n − 1
moments Ψk =

∫∞
0
xkΨ(x)dx, k = 0, 1, ..., 2n − 2 plus the condition

Ψ(0) = ρ is equivalent to fitting f̂e(s) from the first 2n moments m̃k =
mk+1

(k+1)m1
, k = 0, 1, ..., 2n − 1 of fe(x), and then inserting f̂e(s) in the

Pollaczek-Khinchine formula.
b) The input density approximation. The Padé(n−1, n) approxima-

tion obtained by fitting the first 2n moments mk, k = 0, 1, ..., 2n− 1 of
f(x), and inserting f̂(s) in the Pollaczek-Khinchine formula, is equiv-
alent to either of:

(1) fitting f̂e(s) from the first 2n − 1 moments m̃k = mk+1

(k+1)m1
, k =

0, 1, ..., 2n − 2 of fe(x) and the condition fe(0) = 1
m1

, and then

inserting f̂e(s) in the Pollaczek-Khinchine formula.
(2) fitting the first 2n − 2 moments Ψk, k = 0, ..., 2n − 3 of Ψ(x),

plus the initial conditions

Ψ(0) = lim
s→∞

sΨ̂(s) = ρ

Ψ′(0) = −ρ(1− ρ)

m1

⇔ fe(0) =
1

m1

.

Proof: We sketch now the proof of (b)(2) (the proofs of the other two
points are similar and omitted). Let a(s)/b(s) denote an approximation
of the input density transform, and check that the corresponding Padé

approximation of the stationary excess density transform f̂e(s) = 1−f̂(s)
µ1s

may be written as indicated in Box 1, and satisfies the limiting relation
there.

f̂e(s) =
b(s)− a(s)

µ1sb(s)

=
b0 + sb1 + ...+ bns

n − (b0 + (b1 − b0µ1)s+ ...(bn−1 − bn−2µ1 + ...(−1)n−1µn−1b0)sn−1)

µ1sb(s)

=
b0 + (b1 − b0µ2/µ1)s+ ...+ bn/µ1s

n−1

b(s)
=⇒ fe(0) = lim

s→∞
sf̂e(s) =

1

µ1
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The result follows then from:

sΨ̂(s) = ρ
1− f̂e(s)
1− ρf̂e(s)

=⇒
s→∞

ρ

s(sΨ̂(s)− ρ) = −ρ(1− ρ)
sf̂e(s)

1− ρf̂e(s)
=⇒
s→∞

−ρ(1− ρ)

m1

�

Remark 6. All the three approaches above may be viewed as clas-
sic Padé approximations, applied respectively to Ψ̂(s), the equilibrium

transform f̂e(s) or the claims f̂(s) transform.
All the classic exponential mixture approximations recalled in the ab-

stract turn out to be particular cases of our three schemes.

Remark 7. It is possible to use any rational approximation of the
Laplace transform (like (Johnson and Taaffe, 1989), admissible three
moments approximations (Bobbio et al., 2005), etc), at all the three
levels.

Example 1. (1) For n = 1, f̂(s) = f̂e(s) ≈ 1
1+sm1

. The input

density Padé (0, 1) approximation of f̂(s) is:

Ψ̂(s) ≈ ρ

s

1− 1
1+sm1

1− ρ 1
1+sm1

=
ρ

s+ (1− ρ)/m1

⇔

Ψ(x) ≈ ρe−x(1−ρ)/m1 .

It fits Ψ(0),Ψ′(0).

(2) The (0, 1) stationary excess approximation based on f̂e(s) ≈
1

1+sm̃1
yields:

Ψ̂(s) ≈ ρ
s+(1−ρ)/m̃1

⇔ Ψ(x) ≈ ρe−x(1−ρ)/m̃1 .

This is also known as the Renyi approximation, and it is exact
asymptotically in the limit ρ → 1 when m̃1 exists see (Kalash-
nikov, 1997), (Grandell, 2000, (31)). It fits Ψ(0), but it doesn’t
fit Ψ′(0).

4. The Brownian perturbed Cramér-Lundberg process

For a perturbed process we have, besides Ψ(u), two unknowns of
interest: the probability of ”creeping ruin” by diffusion Ψc(u), and that
of ”ruin by jump” Ψj(u). The respective IDE’s and ”obvious boundary
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conditions” are:

GΨj(u) + λF̄ (u) = 0 Ψj(0) = 0(17)

GΨc(u) = 0, Ψc(0) = 1(18)

GΨ(u) + λF̄ (u) = 0, Ψ(0) = 1,(19)

where G is the infinitesimal generator of our process – see for example
(Feng, 2011).

Taking Laplace transform, putting D = σ2

2
and using the fact that

the factor s of κ(s) must appear also in the RHS (since the positive
loading condition implies that s = 0 is not a singularity) yields

κ(s)Ψ̂j(s) = D(Ψ′j(0))− λ ˆ̄F (s), DΨ′j(0)− λm1 = 0

κ(s)Ψ̂c(s) = D(s+ Ψ′c(0)) + c, DΨ′c(0) + c = 0

κ(s)Ψ̂(s) = D(s+ Ψ′(0)) + c− λ ˆ̄F (s), DΨ′(0) + c− λm1 = 0

Solving for the Laplace transforms yields:

Ψ̂j(s) =
λ̃(m1 − ˆ̄F (s))

κ(s)
=

λ(m1 − ˆ̄F (s))

s(s+ c̃− λ̃ ˆ̄F (s))
,(20)

Ψ̂c(s) =
Ds

κ(s)
=

D

Ds+ c− λ ˆ̄F (s)
=

1

s+ c̃− λ̃ ˆ̄F (s)
(21)

Ψ̂(s) =
Ds− λ( ˆ̄F (s)−m1)

κ(s)
⇔ ˆ̄Ψ(s) =

c− λm1

κ(s)
=
κ′(0)

κ(s)
,(22)

where λ̃, c̃ indicate scaled values divided by D = σ2

2
.

Remark 8. The last formula shows, as well-known, that the Pollaczek-
Khinchine formula is insensitive to the form of the spectrally negative
Levy process involved, when written in terms of the symbol κ(s).

In conclusion, we recover the results of (Dufresne and Gerber, 1991).

Proposition 1. The probabilities of ruin by diffusion Ψc(u) and by
jump Ψj(u) satisfy the boundary conditions

Ψc(0) = 1,Ψj(0) = 0,Ψ′c(0) = −c̃,Ψ′j(0) = λ̃m1,(23)

and their Laplace transforms satisfy

p̃Ψ̂c(s) = φ(s),(24)

Ψ̂j(s) =
1− p̃Ψ̂c(s)

s
− Ψ̂c(s) =

1− φ(s)

s
− φ(s)

p̃

where φ(s) = 1−ρ
1−ρf̂e(s)+σ2

2c
s
, p̃ = p

σ2/2
.
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Example 2. For the perturbed Cramér-Lundberg process with exponen-
tial jumps of rate µ, and Laplace exponent

κ(s) =
σ2s2

2
+ cs− λ s

s+ µ
,

we find:

Ψ̂(s) =
1

s
− κ′(0)

κ(s)
=

1

s
− c− λ/µ

σ2

2
s2 + cs− λ s

µ+s

=
1

s
(1− c− λ/µ

σ2

2
s+ c− λ

µ+s

)

=

σ2

2
s+ λs

µ(µ+s)

s
(
σ2

2
s+ c− λ

µ+s

) =

σ2

2
+ λ

µ(µ+s)

σ2

2
s+ c− λ

µ+s

=
1 + λ̃

µ(µ+s)

s+ c̃− λ̃
µ+s

=
µ+ s+ λ̃

µ

(µ+ s)(s+ c̃)− λ̃
,

Ψ̂c(s) =
µ+ s

(s+ c̃)(µ+ s)− λ̃
=

s+ µ

(s+ γ1)(s+ γ2)
,

Ψ̂j(s) = Ψ̂(s)− Ψ̂c(s) =

λ̃
µ

(µ+ s)(s+ c̃)− λ̃
=

2λ
σ2µ

(s+ γ1)(s+ γ2)
,

where γ1, γ2 are the absolute values of the negative roots of the Cramér
Lundberg equation:

s2 + s(c̃+ µ) + c̃µ− λ̃ = 0

ordered so that γ1 < µ < γ2.
It follows that

Ψj(u) =

λ̃
µ

γ2 − γ1

(e−γ1u − e−γ2u)

Ψc(u) =
µ− γ1

γ2 − γ1

e−γ1u +
γ2 − µ
γ2 − γ1

e−γ2u

Ψ(u) =
1− γ1/µ

1− γ1/γ2

e−γ1u +
1− γ2/µ

1− γ2/γ1

e−γ2u,

The equality Ψ(u) = Ψc(u)+Ψc(u) may be checked using γ1 + γ2 = c̃+ µ, γ1γ2 =

c̃µ− λ̃.

5. Second-order Padé approximations for the ruin
probabilities of the perturbed and classic

Cramér-Lundberg processes

To satisfy the boundary condition Ψ(0) = lims→∞ sΨ̂(s) = 1, we
must use at least a ”two point” (1, 2) Padé approximation, since we
must satisfy one condition as s→∞ as well.
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Alternatively, we may look for (1, 2) Padé approximations of the form

Ψ̂j(s) =
aj

s2 + b1s+ b0

, Ψ̂c(s) =
s+ ad

s2 + b1s+ b0

satisfying thus lims→∞ sΨ̂j(s) = Ψj(0) = 0, and lims→∞ sΨ̂c(s) =
Ψc(0) = 1. The Dufresne-Gerber equations (24) impose two more
condition b0 = p̃ad, b1 = ad + aj + p̃, leaving only two coefficients aj, ad
to determine.

We determine now the coefficients aj, ad by equating the first coef-

ficients in the Padé approximation of Ψ̂c(s) around 0, using ˆ̄F (s) =
m1 − m2

2
s+ m3

3!
s2 + ....

Ψ̂c(s) =
1

s+ c̃− λ̃ ˆ̄F (s)
=

1

p̃+ (1 + λ̃m2

2
)s− λ̃m3

3!
s2 + ...

≈ s+ ad
s2 + (ad + aj + p̃)s+ adp̃

(ad + s)(p̃+ (1 + λ̃
m2

2
)s− λ̃m3

3!
s2 + ...) ≈ s2 + (ad + aj + p̃)s+ adp̃

This yields: {
aj = adλ̃

m2

2

ad = 3m2

m3

Theorem 2. Second order approximations for the ruin proba-
bilities of the Brownian perturbed Cramér-Lundberg process.
a) Let

ad =
3m2

m3

, aj = adλ̃
m2

2
=

3λm2
2

σ2m3

(25)

and let −γ1,−γ2 denote the roots of

s2 + (ad + aj + p̃)s+ adp̃ = 0(26)

Then:

(1) The discriminant of (26) is always non-negative. Assuming
w.l.o.g. γ1 < γ2, it holds that 0 < γ1 < ad < γ2.

(2) The approximations for the ”creeping ruin” and ”ruin by jump”

Ψc(x) =
ad − γ1

γ2 − γ1

e−γ1x +
γ2 − ad
γ2 − γ1

e−γ2x

Ψj(x) =
aj

γ2 − γ1

[e−γ1x − e−γ2x],(27)
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satisfy (24), the first two conditions in (23) Ψc(0) = 1,Ψj(0) =
0, fit the first two moments of the aggregate loss L, and are
admissible.

(3) In terms of moments, the Laplace transforms are:

Ψ̂c(s) =
6m2 + 2sm3

2m3s2 + (3λm2
2 + 6m2 + 2pm3) s+ 6pm2

Ψ̂j(s) =
3λm2

2

2m3s2 + (3λm2
2 + 6m2 + 2pm3) s+ 6pm2

b) The input and stationary excess approximations are of the same
form, with ad = m−1

1 , aj = λm1, and ad = m̃−1
1 = 2m1

m2
, aj = λm̃1 =

λ m2

2m1
, respectively.

Proof: a) Let us note that s2 + (ad + aj + p̃)s + adp̃ is negative at
s = −ad (since (ad)

2 +(ad+aj+ p̃)(−ad)+adp̃ = −adaj < 0, and ad and
aj are positive. In particular, the discriminant must be non-negative
and γ1 < ad < γ2.

Laplace inversion yields now (27). Furthermore, Ψj is admissible by
the assumption γ1 < γ2 and Ψc is admissible as sum of positive terms.

Remark 9. The geometric compound approximation in Theorem 2 may
also be viewed as replacing the original process by a process with the
same Brownian component and profit rate, with exponential claims of
mean m = m3

3m2
, and modified claims intensity λ′ = λ

2
m2

m2 . This re-
duces when σ = 0 to DeVylder’s approximation for the classic Cramér-
Lundberg process!

Yet another DeVylder-type approximation may be obtained by equat-
ing the first four cumulants Seixas and dos Reis (2013). This yields the
same profit rate, exponential claims of mean m = m4

4m3
, modified claims

intensity λ′ = λ
6
m3

m3 and volatility σ̃2 = σ2 + λ(m2 − 4
3

m2
3

m4
). Note this is

not always admissible.

Remark 10. In the case of exponential claims of rate µ, all three ap-
proximations are exact, reducing to the well-known formulas (Dufresne

and Gerber, 1991). For example, with σ2

2
= 1, λ = 1

2
, p = 1, and expo-

nential claims of rate 1, the Cramér-Lundberg roots are γ1 = 1/2, γ2 =
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2, ad = 1, aj = 1
2
, and the ruin probabilities are

Ψj(x) =
1

3
(e−x/2 − e−2x)

Ψc(x) =
1

3
e−x/2 +

2

3
e−2x

Ψ(x) =
2e−x/2

3
+
e−2x

3
.

Theorem 3. Three second order approximations for the classic
Cramér-Lundberg process. a) A Padé (1, 2) approximation of the
claims transform:

f̂(s) =
s (b1 − µ1b0) + b0

s2b2 + s b1 + b0

=
s (µ3 − 2µ1µ2 + µ3

1) + (µ2 − µ2
1)

s2(µ1µ3 − µ2
2) + s(µ3 − µ2µ1) + µ2 − µ2

1

(28)

gives rise to the following approximations for the equilibrium and ruin
transform:

f̂e(s) =
1− f̂(s)

µ1s
=

b0 + b2/µ1s

b0 + b1s+ b2s2
⇔

Ψ̂(s) =
ρ

s

1− f̂e(s)
1− ρf̂e(s)

≈ ρ
b2s+ b1 − b2/µ1

b2s2 + b
(D)
1 s+ b

(D)
0

=(29)

ρµ̄1

1− ρ
(µ̄3 − µ̄2

2)x+ µ̄2(µ̄2 − 1)
(µ̄3−µ̄22)

1−ρ x2 + (µ̄3 +
ρµ̄22−µ̄2

1−ρ )x+ µ̄2 − 1
, x = sµ1

where b
(D)
1 = b1 − ρb2/µ1, b

(D)
0 = (1− ρ)b0.

Let µc = 3µ1µ2−2µ3
1 +2

√
(µ2

1 − µ2) 3. This approximation is weakly
admissible iff

µ2
1 < µ2,

µ22
µ1
< µ3, ρ ∈ (0, 1) or

µ21
2
≤ µ2 ≤ µ2

1,

µ3 ∈
(
µc,

µ22
µ1

)
or

µ3 ∈
(

2µ22
3µ1
, µc

)
, ρ ∈ (µ1(µc+µ3)

µ22−µ1µ3
, 1)

(30)

b) Ramsay’s stationary excess approximation, revisited. Imposing

the correct limiting behavior lims→∞ sΨ̂(s) = Ψ(0) = ρ = 1/(1 + θ),
the Padé (1, 2) approximations for the equilibrium density and ruin
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transforms are:

f̂e(s) ≈
N

D
:=

b̃0 + (b̃1 − µ̃1b̃0)s

b̃0 + b̃1s+ b̃2s2
,

Ψ̂(s) ≈ ρ
D −N
D − ρN

:= ρ
b̃2s+ µ̃1b̃0

b̃2s2 + b̃
(E)
1 s+ b̃

(E)
0

,

b̃0 = µ̃2 − µ̃2
1, b̃1 = µ̃3 − µ̃2µ̃1, b̃2 = µ̃1µ̃3 − µ̃2

2,

b̃
(E)
1 = b̃1(1− ρ) + ρµ̃1b̃0, b̃

(E)
0 = (1− ρ)b̃0,

where µ̃i are the factorially reduced moments of the equilibrium density.
c) The geometric compound approximation for ψ(s), in terms of the

stationary excess moments, is:

Ψ̂(s) ≈ N

D
,

N = s
(
−3m̃3

2 + 4m̃1m̃3m̃2 − m̃2
1m̃4

)
− 4m̃3m̃

2
1 + 6m̃2

2m̃1

D = s2

(
−3m̃3

2 + 4m̃1m̃3m̃2 −
1

2
θm̃4m̃2 +

2θm̃2
3

3
− m̃2

1m̃4

)
+s
(
−4m̃3m̃

2
1 + 6m̃2

2m̃1 − θm̃4m̃1 + 2θm̃2m̃3

)
+ 6θm̃2

2 − 4θm̃1m̃3

= sN +
1

6
θ
(
36m̃2

2 − 3s (sm̃4 − 4m̃3) m̃2 + 4 s2m̃2
3 − 6m̃1 (4m̃3 + sm̃4)

)
or, in terms of the claims moments, is:

N = 2λ
(
45m4m

2
2 − 60m2

3m2 + s
(
20m3

3 − 30m2m4m3 + 9m2
2m5

))
D =

(
40λm3

3 − 60λm2m4m3 + 12pm5m3 − 15pm2
4 + 18λm2

2m5

)
s2

+
(
90λm4m

2
2 − 120λm2

3m2 + 36pm5m2 − 60pm3m4

)
s− 240pm2

3 + 180pm2m4

= sN + 3p
(
−80m2

3 + 4s (sm5 − 5m4)m3 − 5s2m2
4 + 12m2 (5m4 + sm5)

)
Proof: a) After checking the formula f̂e(s) = b0+a1s

b0+b1s+b2s2
, with a1 =

b2/µ1, the formula (28) follows from the identity

sΨ̂(s) = ρ
1− f̂e(s)
1− ρf̂e(s)

= ρ
b2s

2 + (b1 − a1)s

b2s2 + (b1 − ρa1)s+ b0(1− ρ)
(31)

The weak-admissibility domain is provided in (Telek and Heindl,
2002).

Straightforward algebra yields b) and c)
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6. Weak admissibility and comparison of the
approximations for the ruin probability of the classic

Cramér-Lundberg process with uniform claims

Definition 2. An approximation of the Pollaczek-Khinchine Laplace
transform Ψ̂(s) will be called admissible if it implies a nonnegative
input density f(x) (and a non-increasing equilibrium density fe(x)).

In actuarial science and queueing theory we only need finally the non-
negativity of the inverse of the Pollaczek-Khinchine Laplace transform,
and this may hold even when the input density is not nonnegative.

Definition 3. a) An approximation of the Pollaczek-Khinchine Laplace

transform Ψ̂(s) will be called weakly admissible if its inverse is non-
negative.

b) The weak admissibility domain I consists of all values of the com-
pounding parameter ρ, and for Brownian perturbed processes, of all
values of σ that render an approximation weakly admissible.

Consider now Padé (k − 1, k)/exact 2k − 1 moments fitting of the
ruin probability of the classic Cramér-Lundberg process with uniform
U [0, 1] claims. The Laplace transform of the claims is 1−e−s

s
, and its

moments are m1 = 1
2
,m2 = 1

3
,m3 = 1

4
, ...,mi = 1

i+1
.

(1) In Mathematica for example, Padé (1, 2) fitting of the input

transform 1−e−s
s

is achieved by

aprlap=PadeApproximant[(1 - Exp[-s])/s, {s, 0, {1,2}}]

f = InverseLaplaceTransform[aprlap, s, t]

The first command yields: 1
s2

12
+ s

2
+1

, and the second yields:

f1,2(x) = 4
√

3e−3x sin(x
√

3),(32)

which is inadmissible (becoming first negative at x = π√
3
).

The input Pollaczek-Khinchine approximation derived from
1

s2

12
+ s

2
+1

is:

Ψ̂(s) =
(s+ 4)ρ

s2 + (6− 2ρ)s+ 12(1− ρ)
,

and this is weakly admissible for all

ρ ∈ (2
√

3− 3, 1) = (0.464102, 1)

(the restriction comes from the inequality b1 ≥ 2
√
b2b0).



ON MATRIX EXPONENTIAL APPROXIMATIONS OF RUIN PROBABILITIES19

(2) the Padé (1,2) approximation of the stationary excess distribu-

tion is:
s
15

+1

s2

20
+ 2s

5
+1

= 4(s+15)
3(s2+8s+20)

(inadmissible), and the resulting

stationary excess (1,2) Pollaczek-Khinchine approximation

(3s+ 20)ρ

3s2 + 4(6− ρ)s+ 60(1− ρ)

is weakly admissible for all

ρ ∈ (
3

2

(
−11 + 5

√
5
)
, 1) = (0.27051, 1)

(3) the geometric compound (1,2) Pollaczek-Khinchine approxima-
tion is:

5(s+ 12)ρ

(6− ρ)s2 + 60s+ 180(1− ρ)

and this has weakly admissible inverse for all

ρ ∈ (
1

2

(
7− 3

√
5
)
, 1) = (0.145898, 1)

Remark 11. In this example, it is the geometric compound approxi-
mation which has the largest domain of weak admissibility.

On the other hand, none of the approximations is admissible. In fact,
there exists no second order phase-type or matrix exponential density
fitting the first two moments of the uniform, since the Aldous-Shepp
(Aldous and Shepp, 1987) ”Erlang bound” of m2

m2
1
≥ k+1

k
does not hold

for k = 2 (4
3

is smaller than 3
2
)

Similar comparisons could be undertaken for the Brownian perturbed
process.
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