1,415 research outputs found

    Cometary ices in forming protoplanetary disc midplanes

    Get PDF
    Low-mass protostars are the extrasolar analogues of the natal Solar system. Sophisticated physicochemical models are used to simulate the formation of two protoplanetary discs from the initial prestellar phase, one dominated by viscous spreading and the other by pure infall. The results show that the volatile prestellar fingerprint is modified by the chemistry en route into the disc. This holds relatively independent of initial abundances and chemical parameters: physical conditions are more important. The amount of CO2 increases via the grain-surface reaction of OH with CO, which is enhanced by photodissociation of H2O ice. Complex organic molecules are produced during transport through the envelope at the expense of CH3OH ice. Their abundances can be comparable to that of methanol ice (few per cent of water ice) at large disc radii (R > 30 au). Current Class II disc models may be underestimating the complex organic content. Planet population synthesis models may underestimate the amount of CO2 and overestimate CH3OH ices in planetesimals by disregarding chemical processing between the cloud and disc phases. The overall C/O and C/N ratios differ between the gas and solid phases. The two ice ratios show little variation beyond the inner 10 au and both are nearly solar in the case of pure infall, but both are subsolar when viscous spreading dominates. Chemistry in the protostellar envelope en route to the protoplanetary disc sets the initial volatile and prebiotically significant content of icy planetesimals and cometary bodies. Comets are thus potentially reflecting the provenances of the midplane ices in the solar nebula

    Tumor taxonomy for the developmental lineage classification of neoplasms

    Get PDF
    BACKGROUND: The new "Developmental lineage classification of neoplasms" was described in a prior publication. The classification is simple (the entire hierarchy is described with just 39 classifiers), comprehensive (providing a place for every tumor of man), and consistent with recent attempts to characterize tumors by cytogenetic and molecular features. A taxonomy is a list of the instances that populate a classification. The taxonomy of neoplasia attempts to list every known term for every known tumor of man. METHODS: The taxonomy provides each concept with a unique code and groups synonymous terms under the same concept. A Perl script validated successive drafts of the taxonomy ensuring that: 1) each term occurs only once in the taxonomy; 2) each term occurs in only one tumor class; 3) each concept code occurs in one and only one hierarchical position in the classification; and 4) the file containing the classification and taxonomy is a well-formed XML (eXtensible Markup Language) document. RESULTS: The taxonomy currently contains 122,632 different terms encompassing 5,376 neoplasm concepts. Each concept has, on average, 23 synonyms. The taxonomy populates "The developmental lineage classification of neoplasms," and is available as an XML file, currently 9+ Megabytes in length. A representation of the classification/taxonomy listing each term followed by its code, followed by its full ancestry, is available as a flat-file, 19+ Megabytes in length. The taxonomy is the largest nomenclature of neoplasms, with more than twice the number of neoplasm names found in other medical nomenclatures, including the 2004 version of the Unified Medical Language System, the Systematized Nomenclature of Medicine Clinical Terminology, the National Cancer Institute's Thesaurus, and the International Classification of Diseases Oncolology version. CONCLUSIONS: This manuscript describes a comprehensive taxonomy of neoplasia that collects synonymous terms under a unique code number and assigns each tumor to a single class within the tumor hierarchy. The entire classification and taxonomy are available as open access files (in XML and flat-file formats) with this article

    Invasive Aspergillus fumigatus infection after Plasmodium falciparum malaria in an immuno-competent host: Case report and review of literature

    Get PDF
    Invasive fungal infection is rarely reported in association with malaria, even though malaria-associated inhibition of phagocyte function is a well-known condition. Invasive aspergillosis is frequently found in severely immuno-compromised patients but not in healthy individuals. Here, a case of pulmonary invasive aspergillosis in a previously healthy patient with severe P. falciparum malaria is presented, who was successfully treated with voriconazol and caspofungin. This is the first survival of malaria-associated invasive aspergillosis

    Statistical Power of Model Selection Strategies for Genome-Wide Association Studies

    Get PDF
    Genome-wide association studies (GWAS) aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly associated variants that have individual and/or interactive effects, while controlling false positives at the desired level. Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model, our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the statistical power of each strategy. An example is provided for the application of our approach to empirical research. The statistical approach used in our derivations is general and can be employed to address the model selection problems in other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which can be downloaded from the Comprehensive R Archive Network (CRAN) or http://bioinformatics.med.yale.edu/group/

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    African ancestry of New World, Bemisia tabaci-whitefly species

    Get PDF
    Bemisia tabaci whitefly species are some of the world’s most devastating agricultural pests and plant-virus disease vectors. Elucidation of the phylogenetic relationships in the group is the basis for understanding their evolution, biogeography, gene-functions and development of novel control technologies. We report here the discovery of five new Sub-Saharan Africa (SSA) B. tabaci putative species, using the partial mitochondrial cytochrome oxidase 1 gene: SSA9, SSA10, SSA11, SSA12 and SSA13. Two of them, SSA10 and SSA11 clustered with the New World species and shared 84.8‒86.5% sequence identities. SSA10 and SSA11 provide new evidence for a close evolutionary link between the Old and New World species. Re-analysis of the evolutionary history of B. tabaci species group indicates that the new African species (SSA10 and SSA11) diverged from the New World clade c. 25 million years ago. The new putative species enable us to: (i) re-evaluate current models of B. tabaci evolution, (ii) recognise increased diversity within this cryptic species group and (iii) re-estimate divergence dates in evolutionary time

    Genome-Wide Effects of Long-Term Divergent Selection

    Get PDF
    To understand the genetic mechanisms leading to phenotypic differentiation, it is important to identify genomic regions under selection. We scanned the genome of two chicken lines from a single trait selection experiment, where 50 generations of selection have resulted in a 9-fold difference in body weight. Analyses of nearly 60,000 SNP markers showed that the effects of selection on the genome are dramatic. The lines were fixed for alternative alleles in more than 50 regions as a result of selection. Another 10 regions displayed strong evidence for ongoing differentiation during the last 10 generations. Many more regions across the genome showed large differences in allele frequency between the lines, indicating that the phenotypic evolution in the lines in 50 generations is the result of an exploitation of standing genetic variation at 100s of loci across the genome

    Robust Biomarkers: Methodologically Tracking Causal Processes in Alzheimer’s Measurement

    Get PDF
    In biomedical measurement, biomarkers are used to achieve reliable prediction of, and useful causal information about patient outcomes while minimizing complexity of measurement, resources, and invasiveness. A biomarker is an assayable metric that discloses the status of a biological process of interest, be it normative, pathophysiological, or in response to intervention. The greatest utility from biomarkers comes from their ability to help clinicians (and researchers) make and evaluate clinical decisions. In this paper we discuss a specific methodological use of clinical biomarkers in pharmacological measurement: Some biomarkers, called ‘surrogate markers’, are used to substitute for a clinically meaningful endpoint corresponding to events and their penultimate risk factors. We confront the reliability of clinical biomarkers that are used to gather information about clinically meaningful endpoints. Our aim is to present a systematic methodology for assessing the reliability of multiple surrogate markers (and biomarkers in general). To do this we draw upon the robustness analysis literature in the philosophy of science and the empirical use of clinical biomarkers. After introducing robustness analysis we present two problems with biomarkers in relation to reliability. Next, we propose an intervention-based robustness methodology for organizing the reliability of biomarkers in general. We propose three relevant conditions for a robust methodology for biomarkers: (R1) Intervention-based demonstration of partial independence of modes: In biomarkers partial independence can be demonstrated through exogenous interventions that modify a process some number of “steps” removed from each of the markers. (R2) Comparison of diverging and converging results across biomarkers: By systematically comparing partially-independent biomarkers we can track under what conditions markers fail to converge in results, and under which conditions they successfully converge. (R3) Information within the context of theory: Through a systematic cross-comparison of the markers we can make causal conclusions as well as eliminate competing theories. We apply our robust methodology to currently developing Alzheimer’s research to show its usefulness for making causal conclusions

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore