62 research outputs found

    Scoliosis and dental occlusion: a review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Idiopathic scoliosis is a deformity without clear etiology. It is unclear wether there is an association between malocclusion and scoliosis. Several types of occlusion were described in subjects with scoliosis, mostly case-reports.</p> <p>Objectives</p> <p>The aim of this review was to evaluate the type of occluslins more prevalent in subjects with scoliosis</p> <p>Search strategy</p> <p>All randomised and controlled clinical trials identified from the Cochrane Oral Health Group Trials Register, a MEDLINE search using the Mesh term scoliosis, malocclusion, and relevant free text words, and the bibliographies of papers and review articles which reported the outcome of orthodontic treatment in subjects with scoliosis that were published as abstracts or papers between 1970 and 2010.</p> <p>Selection criteria</p> <p>All randomised and controlled clinical trials published as full papers or abstracts which reported quantitative data on the outcomes malocclusion in subjects with scoliosis.</p> <p>Data collection and analysis</p> <p>Data were extracted without blinding to the authors, age of patients or type of occlusion.</p> <p>Main results</p> <p>Using the search strategy eleven observational longitudinal studies were identified. No randomized clinical trials were recorded. Twenty-three cross-sectional studies were recorderd, and the others studies were reviews, editorials, case-reports, or opinions. The clinical trials were often not controlled and were about the cephalometric evaluation after treatment with the modified Milwuakee brace, followed by the orthodontic treatment of the class II relationship with a functional appliance. Clinical trials also included the study of the associations between scoliosis and unilateral crossbite, in children with asymmetry of the upper cervical spine. This association was also investigated in rats, pigs and rabbits in clinical trials. The other associations between scoliosis and occlusion seems to be based only on cross-sectional studies, case-reports, opinions.</p> <p>Authors' conclusions</p> <p>Based on selected studies, this review concludes that there is plausible evidence for an increased prevalence of unilateral Angle Class II malocclusions associated with scoliosis, and an increased risk of lateral crossbite, midline deviation in children affected by scoliosis. Also, documentation of associations between reduced range of lateral movements and scoliosis seem convincing. Data are also mentioned about the association between plagiocephaly and scoliosis.</p

    Multiple Processes Regulate Long-Term Population Dynamics of Sea Urchins on Mediterranean Rocky Reefs

    Get PDF
    We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management

    Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes

    Get PDF
    Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinrazaℱ/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes

    Human health and ocean pollution

    Get PDF
    Copyright © 2020 The Author(s). Background: Pollution – unwanted waste released to air, water, and land by human activity – is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources – coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children’s risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals – phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste – can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South – environmental injustice on a planetary scale. Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth’s resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted. Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored. Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health. Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress. Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries. Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.The Centre Scientifique de Monaco, the Prince Albert II of Monaco Foundation and the Government of the Principality of Monaco John J. Stegeman is supported by U.S. Oceans and Human Health Program (NIH grant P01ES028938 and National Science Foundation grant OCE-1840381). Lora E. Fleming is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 774567 (H2020 SOPHIE Project) and No 666773 (H2020 BlueHealth Project). Plastic toxicity research for Dimitri Deheyn is supported by the BEST Initiative (https://deheynlab.ucsd.edu/best-2/). Barbara Demeneix is supported by grants from the program H2020. Charles J. Dorman is supported by Science Foundation Ireland Investigator Award 13/IA/1875. William H. Gaze is supported by a Natural Environment Research Council Knowledge Exchange Fellowship NE/S006257/1 on the environmental dimension of antimicrobial resistance. Philippe Grandjean is supported by National Institute of Environmental Health Sciences (NIEHS) of the NIH (grant No. ES027706), a Superfund center grant for the Sources, Transport, Exposure and Effects of Perfluoroalkyl Substances (STEEP) Center. Mark E. Hahn is supported by U.S. Oceans and Human Health Program (NIH grant P01ES028938 and National Science Foundation grant OCE-1840381). Amro Hamdoun is supported by NIH and NSF Program on Oceans and Human Health Grants NIH ES030318 and NSF 1840844. Philipp Hess is supported by the IAEA Core Research Project K41014, by the European H2020 program for funding the EMERTOX project (grant number 778069), by the Atlantic Interreg (grant number Alertox-Net EAPA-317-2016) and by EFSA for the project EUROCIGUA (framework partnership agreement GP/EFSA/AFSCO/2015/03). Rachel T. Noble was supported by the US National Science Foundation Accelerating Innovations in Research #1602023 and the NOAA NERRS Science Collaborative. Maria Luiza Pedrotti is supported by Centre National de la Recherche Scientifique (CNRS). Luigi Vezzulli is supported by the following grants: European FP7 Program Grant AQUAVALENS 311846 and European Union’s Horizon 2020 Research and Innovation Program Grant VIVALDI 678589. PĂĄl Weihe is supported by the Danish EPA programme: Danish Cooperation for Environment in the Arctic and by the Faroese Research Council

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Distribution patterns of riodinid butterflies (Lepidoptera: Riodinidae) from southern Brazil

    Get PDF
    Background: The aim of this study was to synthesize the knowledge of Riodinidae butterflies (Lepidoptera: Papilionoidea) in Rio Grande do Sul state (RS), southern Brazil, evaluating the role of climatic, topographic, and vegetational variables on the observed patterns of occurrence and distribution of these butterflies in the Pampa and Atlantic Forest biomes. The records of riodinid butterflies in RS were collected from published studies and the examination of museum collections in Brazil. Results: A total of 97 taxa of Riodinidae were recorded, distributed in 92 municipalities. The NMDS analysis and the Constrained Analysis of Principal Coordinates grouped the municipalities according to the phytogeographic regions and biomes - Pampa and Atlantic Forest domains - in which the species records were made. Distance from the ocean, precipitation and temperature were the environmental variables which most contributed to explain the distribution patterns of these butterflies. The multivariate Mantel correlogram suggests that over short distances, the composition of species shows significant levels of spatial autocorrelation, and as geographic distance increases, these levels tend to present negative values. Conclusions: The results suggest that the observed distribution pattern of Riodinidae in the different biomes and phytogeographic regions in the extreme southern Brazil could be explained by climatic, environmental variables and geographic distance

    SPATIAL AND TEMPORAL DISTRIBUTION AND RECRUITMENT OF ECHINODERM LARVAE IN THE LIGURIAN SEA

    No full text
    Seasonal and annual variations in the distribution and abundance of echinoderm larvae (early to post-larvae of principally echinoids and ophiuroids), were determined from a series of plankton net tows taken at three stations in the Bay of Villefranche (France) and along a radial transect of 28 nautical miles (52 km), from the Bay to half-way to Corsica, between 1984 and 1988. Spatial distribution of six echinoderm species have been mapped. For the echinoids, Paracentrotus lividus and Arbacia lixula, spawning takes place twice a year and appears to be synchronous because larval cohorts were comprised of distinct age-classes both near and far from the coast. Recruitment for these species is, therefore, thought to occur at well-defined periods. In contrast, the ophiuroid species studied (Amphiura filiformis, Ophiothrix fragilis, Ophiopluteus bimaculatus and O. compressus) spawn several times per year with a relatively short period in late spring and a prolonged spawning between the end of autumn and winter. These later results are consistent with the presence of mixed size-classes of larvae either from the nearby coast or offshore. Recruitment for these ophiuroids appears to be much more variable and spread over time

    FOOD SELECTION (SIZE AND FLAVOR) DURING DEVELOPMENT OF ECHINODERM LARVAE

    No full text
    Food preferences (flavor and size) by two echinoderm plutei, Paracentrotus lividus and Arbacia lixula, were studied in two experiments. These included selection between polystyrene spheres (flavored and non-flavored) of different sizes in short-term (15 min) feeding experiments and selection among food algae of varying sizes in long-term (24 h) feeding experiments. Clearance and ingestion rates change during larval ontogenesis and are dependent on the size and the quality of available particles. In general, clearance rates were higher for larvae fed on a mixture of three sizes of polystyrene spheres or algae than for those fed separate foods. Young larvae (4- and 6-arm stage) had a higher clearance rate with larger-sized spheres (18.5 mu m) and larger-sized alga Prorocentrum micans (26.0 mu m). For older larvae (8-arm stage with rudiment), the preference was divided between medium- and larger-sized particles. Retention capability of small-sized spheres (2.9 mu m) and algae (Isochrysis galbana), compared to the other sizes of particles, was very low during all experiments. When different sizes of spheres and algae were offered separately, Arbacia lixula larvae ingested larger-sized particles at great rates throughout development. Young Paracentrotus lividus larvae ingested larger-sized spheres at greater rates than other sizes of particles. During older larval stages, medium-sized spheres are ingested preferentially. In mixtures of different-sized particles, medium-sized spheres and algae are generally captured first. For young larvae clearance and ingestion rates increased when spheres were treated with a filtrate of Criscosphaera elongata algae. Young larvae select particles on the basis of their quality and size; as larvae grow, particle selection is size dependent

    Effect of microalgae treated with natural toxins on the nutrition and development of filter-feeding sea-urchin larvae

    No full text
    Filter-feeding larvae of the sea urchin Paracentrotus lividus fed phytoplankton previously exposed to sublethal amounts of toxins were chosen as a model to assess the potential effects of natural toxins on survivorship, development and feeding behaviour. The marine microalga Cricosphaera elongata was incubated with organic extract of the green seaweed Caulerpa taxifolia and then offered to larvae at different stages of development. Sensitivity to the toxin-treated food depended on the larval stage at which exposure began. Larvae reared from first feeding (4-arm stage) with toxin-treated microalgae were most sensitive (25% survival, delay in development and a metamorphosis rate of 32%). A diet begun at the 8-arm stage caused a decrease in survival and abnormal development; however, all the remaining larvae achieved metamorphosis. Certain ontogenic stages were more sensitive than others; in all treatments, mortality rate was highest during the formation of the echinus rudiment. Feeding experiments comparing ingestion of inert and toxin-treated polystyrene microspheres suggested that larvae discriminate against toxin-treated particles. (C) 1999 Elsevier Science Ltd. All rights reserved
    • 

    corecore