92 research outputs found

    Descritpion of Exotic Nuclei Using Continuum Shell Model

    Get PDF
    In weakly bound exotic nuclei, number of excited bound states or narrow resonances is small and, moreover, they couple strongly to the particle continuum. Hence, these systems should be described in the quantum open system formalism which does not artificially separate the subspaces of (quasi-) bound and scattering states. The Shell Model Embedded in the Continuum provides a novel approach which solves this problem. Examples of application in sd-shell nuclei will be presented.Comment: Presented at the NATO Advanced Research Workshop Brijuni, Pula, Croatia, June 2-5, 200

    The SPEDE spectrometer

    Get PDF
    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {\gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams

    The SPEDE spectrometer

    Get PDF
    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ \gamma rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams

    Beta-delayed proton emission from 20Mg

    Get PDF
    Beta-delayed proton emission from 20 Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 27 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in 20 Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in 20 Na is observed. This may allow studies of the 4032.9(2.4)keV resonance in 19 Ne through the beta decay of 20 Mg, which is important for the astrophysically relevant reaction 15O( α \alpha , γ \gamma )19Ne . Beta-delayed protons were used to obtain a more precise value for the half-life of 20 Mg, 91.4(1.0)ms

    Fast-timing study of the l -forbidden 12+→32+ M1 transition in Sn 129 FAST-TIMING STUDY of the l -FORBIDDEN ⋯ R. LICǎ et al.

    Get PDF
    © 2016 authors. Published by the American Physical Society.The levels in Sn129 populated from the β- decay of In129 isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 12+ state and the 32+ ground state in Sn129 are expected to have configurations dominated by the neutron s12 (l=0) and d32 (l=2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we have measured the half-life of the 12+ 315.3-keV state, T12= 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T12 value by the renormalization of the M1 effective operator for neutron holes

    Comparison of electromagnetic and nuclear dissociation of 17Ne^{17}\mathrm{Ne}

    Get PDF
    The Borromean drip-line nucleus ¹⁷Ne has been suggested to possess a two-proton halo structure in its ground state. In the astrophysical rp-process, where the two-proton capture reaction ¹⁵O(2p,γ) ¹⁷Ne plays an important role, the calculated reaction rate differs by several orders of magnitude between different theoretical approaches. To add to the understanding of the ¹⁷Ne structure we have studied nuclear and electromagnetic dissociation. A 500 MeV/u¹⁷Ne beam was directed toward lead, carbon, and polyethylene targets. Oxygen isotopes in the final state were measured in coincidence with one or two protons. Different reaction branches in the dissociation of ¹⁷Ne were disentangled. The relative populations of s and d states in ¹⁶F were determined for light and heavy targets. The differential cross section for electromagnetic dissociation (EMD) shows a continuous internal energy spectrum in the three-body system ¹⁵O + 2p. The ¹⁷Ne EMD data were compared to current theoretical models. None of them, however, yields satisfactory agreement with the experimental data presented here. These new data may facilitate future development of adequate models for description of the fragmentation process

    Normal and intruder configurations in Si- 34 populated in the beta(-) decay of Mg-34 and Al-34

    Get PDF
    The structure of Si-34 was studied through gamma spectroscopy separately in the beta(-) decays of Mg-34 and Al-34 at the ISOLDE facility of CERN. Different configurations in Si-34 were populated independently from the two recently identified beta-decaying states in Al-34 having spin-parity assignments J(pi) = 4(-) dominated by the normal configuration pi(d(5/2))(-1) circle times nu(f(7/2)) and J(pi) = 1(+) by the intruder configuration pi(d(5/2))(-1) circle times nu(d(3/2))(-1) (f(7/2))(2). The paper reports on spectroscopic properties of Si-34 such as an extended level scheme, spin and parity assignments based on log(ft) values and gamma-ray branching ratios, absolute beta feeding intensities, and neutron emission probabilities. A total of 11 newly identified levels and 26 transitions were added to the previously known level scheme of Si-34. Large scale shell-model calculations using the SDPF-U-MIX interaction, able to treat higher order intruder configurations, are compared with the new results and conclusions are drawn concerning the predictive power of SDPF-U-MIX, the N = 20 shell gap, the level of mixing between normal and intruder configurations for the 0(1)(+), 0(2)(+), and 2(1)(+) states, and the absence of triaxial deformation in Si-3(4).Peer reviewe

    Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Get PDF
    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type OA(p,2p)NA-1 have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry

    First beta-decay spectroscopy of In-135 and new beta-decay branches of In-134

    Get PDF
    The beta decay of the neutron-rich In-134 and In-135 was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number Z = 50 above the N = 82 shell. The beta-delayed gamma-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three beta-decay branches of In-134 were established, two of which were observed for the first time. Population of neutron-unbound states decaying via. rays was identified in the two daughter nuclei of In-134, Sn-134 and Sn-133, at excitation energies exceeding the neutron separation energy by 1 MeV. The beta-delayed one- and two-neutron emission branching ratios of In-134 were determined and compared with theoretical calculations. The beta-delayed one-neutron decay was observed to be dominant beta-decay branch of In-134 even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of Sn-134. Transitions following the beta decay of In-135 are reported for the first time, including. rays tentatively attributed to Sn-135. In total, six new levels were identified in Sn-134 on the basis of the beta.. coincidences observed in the In-134 and In-135 beta decays. A transition that might be a candidate for deexciting the missing neutron single-particle 13/2(+) state in Sn-133 was observed in both beta decays and its assignment is discussed. Experimental level schemes of Sn-134 and Sn-135 are compared with shell-model predictions. Using the fast timing technique, half-lives of the 2(+), 4(+), and 6(+) levels in Sn-134 were determined. From the lifetime of the 4(+) state measured for the first time, an unexpectedly large B(E2; 4(+)-> 2(+)) transition strength was deduced, which is not reproduced by the shell-model calculations.Peer reviewe
    corecore