57 research outputs found

    A prospective study to assess the value of MMP-9 in improving the appropriateness of urgent referrals for colorectal cancer

    Get PDF
    Background Bowel cancer is common and is a major cause of death. Most people with bowel symptoms who meet the criteria for urgent referral to secondary care will not be found to have bowel cancer, and some people who are found to have cancer will have been referred routinely rather than urgently. If general practitioners could better identify people who were likely to have bowel cancer or conditions that may lead to bowel cancer, the pressure on hospital clinics may be reduced, enabling these patients to be seen more quickly. Increased levels of an enzyme called matrix metalloproteinase 9 (MMP-9) have been found to be associated with such conditions, and this can be measured from a blood sample. This study aims to find out whether measuring MMP-9 levels could improve the appropriateness of urgent referrals for patients with bowel symptoms. Methods People aged 18 years or older referred to a colorectal clinic will be asked to complete a questionnaire about symptoms, recent injuries or chronic illnesses (these can increase the level of matrix metalloproteinases) and family history of bowel cancer. A blood sample will be taken from people who consent to take part to assess MMP-9 levels, and the results of examination at the clinic and/or investigations arising from the clinic visit will be collected from hospital records. The accuracy of MMP-9 will be assessed by comparing the MMP-9 level with the resulting diagnosis. The combination of factors (e.g. symptoms and MMP-9 level) that best predict a diagnosis of malignancy (invasive disease or polyps) will be determined. Discussion Although guidelines are in place to facilitate referrals to colorectal clinics, symptoms alone do not adequately distinguish people with malignancy from people with benign conditions. This study will establish whether MMP-9 could assist this process. If this were the case, measurement of MMP-9 levels could be used by general practitioners to assist in the identification of people who were most likely to have bowel cancer or conditions that may lead to bowel cancer, and who should, therefore, be referred most urgently to secondary car

    Establishing the added benefit of measuring MMP9 in FOB positive patients as a part of the Wolverhampton colorectal cancer screening programme

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bowel cancer is common and a major cause of death. The NHS is currently rolling out a national bowel cancer screening programme that aims to cover the entire population by 2010. The programme will be based on the Faecal Occult Blood test (FOBt) that reduces mortality from colon cancer by 16%. However, FOB testing has a relatively low positive predictive value, with associated unnecessary cost, risk and anxiety from subsequent investigation, and is unacceptable to a proportion of the target population. Increased levels of an enzyme called matrix metalloproteinase 9 (MMP9) have been found to be associated with colorectal cancer, and this can be measured from a blood sample. MMP9 has potential for detecting those at risk of having colorectal cancer. The aim of this study is to assess whether MMP9 estimation enhances the predictive value of a positive FOBt.</p> <p>Methods and design</p> <p>FOBt positive people aged 60–69 years attending the Wolverhampton NHS Bowel Cancer Screening Unit and providing consent for colonoscopy will be recruited. Participants will provide a blood sample prior to colonoscopy and permission for collection of the clinical outcome from screening unit records. Multivariate logistic regression analyses will determine the independent factors (patient and disease related, MMP9) associated with the prediction of neoplasia.</p> <p>Discussion</p> <p>Colorectal cancer is a major cause of morbidity and mortality. Pilot studies have confirmed the feasibility of the national cancer screening programme that is based on FOBt. However, the test has high false positive rates. MMP9 has significant potential as a marker for both adenomas and cancers. This study is to examine whether using MMP9 as an adjunct to FOBt improves the accuracy of screening and reduces the number of false positive tests that cause anxiety and require invasive and potentially harmful investigation.</p

    The cometary composition of a protoplanetary disk as revealed by complex cyanides

    Full text link
    Observations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the same holds for more complex organic molecules outside of the Solar Nebula, since recent observations show a dramatic change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and HC3N) in the protoplanetary disk around the young star MWC 480. We find abundance ratios of these N-bearing organics in the gas-phase similar to comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of the Solar Nebula was not unique.Comment: Definitive version of the manuscript is published in Nature, 520, 7546, 198, 2015. This is the author's versio

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication

    Get PDF
    Background & Aims Chronic hepatitis C is a global health problem with an estimated 170 million hepatitis C virus (HCV) infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX, gene name: ENPP2) is a phospholipase with diverse roles in the physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood. Methods In vitro hepatocyte and ex vivo liver culture systems along with chimeric humanized liver mice and HCC tissue enabled us to assess the interplay between ATX and the HCV life cycle. Results HCV infection increased hepatocellular ATX RNA and protein expression. HCV infection stabilizes hypoxia inducible factors (HIFs) and we investigated a role for these transcription factors to regulate ATX. In vitro studies show that low oxygen increases hepatocellular ATX expression and transcriptome analysis showed a positive correlation between ATX mRNA levels and hypoxia gene score in HCC tumour tissue associated with HCV and other aetiologies. Importantly, inhibiting ATX-lysophosphatidic acid (LPA) signalling reduced HCV replication, demonstrating a positive role for this phospholipase in the viral life cycle. LPA activates phosphoinositide-3-kinase that stabilizes HIF-1α and inhibiting the HIF signalling pathway abrogates the pro-viral activity of LPA. Conclusions Our data support a model where HCV infection increases ATX expression which supports viral replication and HCC progression. Lay summary Chronic hepatitis C is a global health problem with infected individuals at risk of developing liver disease that can progress to hepatocellular carcinoma. Autotaxin generates the biologically active lipid lysophosphatidic acid that has been reported to play a tumorigenic role in a wide number of cancers. In this study we show that hepatitis C virus infection increases autotaxin expression via hypoxia inducible transcription factor and provides an environment in the liver that promotes fibrosis and liver injury. Importantly, we show a new role for lysophosphatidic acid in positively regulating hepatitis C virus replication.Research in the McKeating laboratory was funded by the MRC, NIHR Birmingham Liver BRU, EU FP7 PathCO and H2020 grant Hep-CAR. Research in the Wakelam lab is supported by BBSRC and Hep-CAR. Stephanie Roessler was supported by Hep-CAR, DFG grant RO4673, the Olympia-Morata Programme, a Brigitte-Schieben-Lange Fellowship and a Heidelberg School of Oncology Fellowship

    Plasma lipid biomarker signatures in squamous carcinoma and adenocarcinoma lung cancer patients

    Get PDF
    There is a clinical need for reliable biomarkers for lung cancer that permit early diagnosis of the disease and provide prediction of histological phenotype. A prospective study design was used with a study population of patients with suspected lung cancer. Blood samples were collected from 17 patients with histologically confirmed squamous cell lung carcinoma, 17 individuals with adenocarcinoma, and 17 control individuals who did not subsequently have a diagnosis of lung cancer or any other cancer. Blood plasma samples were analysed for their lipid profiles using liquid chromatography coupled with high resolution mass spectrometry. Data were analysed using multivariate statistical methods. There was good separation between histological subtypes and control groups and also between individuals with a subsequent diagnosis of adenocarcinoma and squamous cell carcinoma (sensitivity 80 %, specificity 83 %, Q2 = 0.70). Alterations in the levels of different classes of lipids including triglycerides (TGs), phosphatidylinositols (PIs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), free fatty acids, lysophospholipids and sphingolipids were observed in squamous carcinoma and adenocarcinoma lung cancer patients when compared with control patients. In conclusion, this study has identified candidate lipid biomarkers of non-small cell lung cancer patients which may be helpful to indicate the tumour subtype and to differentiate them from patients who do not have lung cancer. Measuring these biomarkers has the potential to improve diagnosis in patients with suspected lung cancer and risk stratification in screening

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes

    Get PDF
    Hyperthermia is a promising treatment modality for cancer in combination both with radio- and chemotherapy. In spite of its great therapeutic potential, the underlying molecular mechanisms still remain to be clarified. Due to lipid imbalances and 'membrane defects' most of the tumour cells possess elevated membrane fluidity. However, further increasing membrane fluidity to sensitise to chemo-or radiotherapy could have some other effects. In fact, hyperfluidisation of cell membrane induced by membrane fluidiser initiates a stress response as the heat shock protein response, which may modulate positively or negatively apoptotic cell death. Overviewing some recent findings based on a technology allowing direct imaging of lipid rafts in live cells and lipidomics, novel aspects of the intimate relationship between the 'membrane stress' of tumour cells and the cellular heat shock response will be highlighted. Our findings lend support to both the importance of membrane remodelling and the release of lipid signals initiating stress protein response, which can operate in tandem to control the extent of the ultimate cellular thermosensitivity. Overall, we suggest that the fluidity variable of membranes should be used as an independent factor for predicting the efficacy of combinational cancer therapies
    • 

    corecore