39 research outputs found

    Association between variations in the TLR4 gene and incident type 2 diabetes is modified by the ratio of total cholesterol to HDL-cholesterol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptor 4 (TLR4), the signaling receptor for lipopolysaccharides, is an important member of the innate immunity system. Since several studies have suggested that type 2 diabetes might be associated with changes in the innate immune response, we sought to investigate the association between genetic variants in the <it>TLR4 </it>gene and incident type 2 diabetes.</p> <p>Methods</p> <p>A case-cohort study was conducted in initially healthy, middle-aged subjects from the MONICA/KORA Augsburg studies including 498 individuals with incident type 2 diabetes and 1,569 non-cases. Seven SNPs were systematically selected in the <it>TLR4 </it>gene and haplotypes were reconstructed.</p> <p>Results</p> <p>The effect of <it>TLR4 </it>SNPs on incident type 2 diabetes was modified by the ratio of total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C). In men, four out of seven <it>TLR4 </it>variants showed significant interaction with TC/HDL-C after correction for multiple testing (p < 0.01). The influence of the minor alleles of those variants on the incidence of type 2 diabetes was observed particularly for male patients with high values of TC/HDL-C. Consistent with these findings, haplotype-based analyses also revealed that the effect of two haplotypes on incident type 2 diabetes was modified by TC/HDL-C in men (p < 10<sup>-3</sup>). However, none of the investigated variants or haplotypes was associated with type 2 diabetes in main effect models without assessment of effect modifications.</p> <p>Conclusion</p> <p>We conclude that minor alleles of several <it>TLR4 </it>variants, although not directly associated with type 2 diabetes might increase the risk for type 2 diabetes in subjects with high TC/HDL-C. Additionally, our results confirm previous studies reporting sex-related dissimilarities in the development of type 2 diabetes.</p

    AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases

    Get PDF
    Previous studies showed an association of the common functional polymorphism (C34T, Gln12Stop) in the adenosine monophosphate deaminase-1 (AMPD1) gene with survival in heart failure (HF) and/or coronary artery disease (CAD). The aim of the study was to search for other mutations in selected regions of the AMPD1 gene in Polish CAD and HF patients, and to analyze their associations with obesity and diabetes. Exons 2, 3, 5, and 7 of AMPD1 were scanned for mutations in 97 patients with CAD without HF (CAD+ HF−), 104 patients with HF (HF+), and 200 newborns from North-Western Poland using denaturing high-performance liquid chromatography (DHPLC), polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and direct sequencing. Frequencies of AMPD1 C34T mutation, as well as novel A99G, G512A, IVS4-6delT, and C784T sequence alterations, were similar in the three groups, but 860T mutated allele was less frequent in the combined CAD+ HF− and HF+ groups than in the controls (1.7% vs. 4.3%, p = 0.040). Heterozygous 34CT genotype was associated with lower (odds ratio [OR] = 0.32, 95% confidence interval [CI] = 0.13–0.81) and 860AT with higher (OR = 13.7, 95%CI = 1.6–118) prevalence of diabetes or hyperglycemia in relation to wild-type homozygotes. Abdominal obesity was more frequent in 860AT patients than in wild-type homozygotes and 34CT heterozygotes (86% vs. 40% vs. 29%, p < 0.05). Nine genes containing polymorphisms linked with AMPD1 C34T mutation were found in the HapMap database. AMPD1 C34T nonsense mutation is associated with reduced prevalence of diabetes and obesity in patients with CAD or HF, but A860T substitution seems to exert opposite metabolic effects and should always be accounted for in the studies of the AMPD1 genotype

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]

    Improving the success rate of protein crystallization by random microseed matrix screening

    No full text
    Random microseed matrix screening (rMMS) is a protein crystallization technique in which seed crystals are added to random screens. By increasing the likelihood that crystals will grow in the metastable zone of a protein\u27s phase diagram, extra crystallization leads are often obtained, the quality of crystals produced may be increased, and a good supply of crystals for data collection and soaking experiments is provided. Here we describe a general method for rMMS that may be applied to either sitting drop or hanging drop vapor diffusion experiments, established either by hand or using liquid handling robotics, in 96-well or 24-well tray format
    corecore