47 research outputs found

    Magnetic interactions in iron superconductors: A review

    Get PDF
    High temperature superconductivity in iron pnictides and chalcogenides emerges when a magnetic phase is suppressed. The multi-orbital character and the strength of correlations underlie this complex phenomenology, involving magnetic softness and anisotropies, with Hund's coupling playing an important role. We review here the different theoretical approaches used to describe the magnetic interactions in these systems. We show that taking into account the orbital degree of freedom allows us to unify in a single phase diagram the main mechanisms proposed to explain the (\pi,0) order in iron pnictides: the nesting-driven, the exchange between localized spins, and the Hund induced magnetic state with orbital differentiation. Comparison of theoretical estimates and experimental results helps locate the Fe superconductors in the phase diagram. In addition, orbital physics is crucial to address the magnetic softness, the doping dependent properties, and the anisotropies.Comment: Invited review article for a focus issue of Comptes Rendus Physique: 26 pages, 10 figures. Revised version, as accepted. Small changes throughout the text plus new subsection (Sec. IIIE

    Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity

    Get PDF
    Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission

    Treatment of recurrent malignant gliomas with fotemustine monotherapy: impact of dose and correlation with MGMT promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recurrent malignant gliomas (MGs), a high rate of haematological toxicity is observed with the use of fotemustine at the conventional schedule (100 mg/m<sup>2 </sup>weekly for 3 consecutive weeks followed by triweekly administration after a 5-week rest period). Also, the impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status on fotemustine activity has never been explored in the clinical setting.</p> <p>Methods</p> <p>40 patients with recurrent pretreated MG were identified as being treated with fotemustine at doses ranging from 65 mg/m<sup>2 </sup>to 100 mg/m<sup>2</sup>. Patients were classified into 3 groups according to the dose of fotemustine received, from the lowest dosage received in group A, to the highest in group C. Analysis of MGMT promoter methylation in tumor tissue was successfully performed in 19 patients.</p> <p>Results</p> <p>Overall, 20% of patients responded to treatment, for a disease control rate (DCR, responses plus stabilizations) of 47.5%. Groups A and B experienced a response rate of 40% and 26.5% respectively, while the corresponding value for group C was 10%. Out of 19 patients, MGMT promoter was found methylated in 12 cases among which a DCR of 66.5% was observed. All 7 patients with unmethylated MGMT promoter were progressive to fotemustine.</p> <p>Conclusion</p> <p>Low-dose fotemustine at 65–75 mg/m<sup>2 </sup>(induction phase) followed by 75–85 mg/m<sup>2 </sup>(maintenance phase) has an activity comparable to that of the conventional schedule. By determination of the MGMT promoter methylation status patients might be identified who are more likely to benefit from fotemustine chemotherapy.</p

    Flying ad-hoc network application scenarios and mobility models

    Get PDF
    [EN] Flying ad-hoc networks are becoming a promising solution for different application scenarios involving unmanned aerial vehicles, like urban surveillance or search and rescue missions. However, such networks present various and very specific communication issues. As a consequence, there are several research studies focused on analyzing their performance via simulation. Correctly modeling mobility is crucial in this context and although many mobility models are already available to reproduce the behavior of mobile nodes in an ad-hoc network, most of these models cannot be used to reliably simulate the motion of unmanned aerial vehicles. In this article, we list the existing mobility models and provide guidance to understand whether they could be actually adopted depending on the specific flying ad-hoc network application scenarios, while discussing their advantages and disadvantages.Bujari, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P.; Palazzi, CE.; Ronzani, D. (2017). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks. 13(10):1-17. doi:10.1177/1550147717738192S117131

    IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An advantage of the Intensity Modulated Radiotherapy (IMRT) technique is the feasibility to deliver different therapeutic dose levels to PTVs in a single treatment session using the Simultaneous Integrated Boost (SIB) technique. The paper aims to describe an automated tool to calculate the dose to be delivered with the SIB-IMRT technique in different anatomical regions that have the same Biological Equivalent Dose (BED), i.e. IsoBED, compared to the standard fractionation.</p> <p>Methods</p> <p>Based on the Linear Quadratic Model (LQM), we developed software that allows treatment schedules, biologically equivalent to standard fractionations, to be calculated. The main radiobiological parameters from literature are included in a database inside the software, which can be updated according to the clinical experience of each Institute. In particular, the BED to each target volume will be computed based on the alpha/beta ratio, total dose and the dose per fraction (generally 2 Gy for a standard fractionation). Then, after selecting the reference target, i.e. the PTV that controls the fractionation, a new total dose and dose per fraction providing the same isoBED will be calculated for each target volume.</p> <p>Results</p> <p>The IsoBED Software developed allows: 1) the calculation of new IsoBED treatment schedules derived from standard prescriptions and based on LQM, 2) the conversion of the dose-volume histograms (DVHs) for each Target and OAR to a nominal standard dose at 2Gy per fraction in order to be shown together with the DV-constraints from literature, based on the LQM and radiobiological parameters, and 3) the calculation of Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) curve versus the prescribed dose to the reference target.</p

    Nonlinear model standardization for the analysis and design of nonlinear systems with multiple equilibria

    Get PDF
    In engineering practice, a nonlinear system stable about several equilibria is often studied by linearizing the system over a small range of operation around each of these equilibria, and allowing the study of the system using linear system methods. Theoretically, for operations beyond a small range but still within the stable regime of an equilibrium, the system behaves nonlinearly, and can be described and investigated using the Volterra series approach. However, there is still no available approach that can systematically transform the model of a nonlinear system into a form that can be studied over the whole stable regime about an equilibrium so as to facilitate the system study using the Volterra series approach. This transformation is, in the present study, referred to as nonlinear model standardization, which is the extension of the well-known concept of linearization to the nonlinear case. In this paper, a novel approach to nonlinear model standardization is proposed for nonlinear systems that can be described by a Nonlinear AutoRegressive model with eXogeneous input (NARX) or a nonlinear differential equation (NDE) model. The proposed approach is then used in three case studies covering the applications in nonlinear system analysis, nonlinear system design, and nonlinearity compensation, respectively, demonstrating the significance of the proposed nonlinear model standardization in a wide range of engineering practices

    Strategies for preventing group B streptococcal infections in newborns: A nation-wide survey of Italian policies

    Get PDF

    Radiochirurgia delle metastasi cerebrali

    No full text

    Linear Accelerator and Greitz-Bergstrom's Head Fixation System in Radiosurgery of Single Cerebral Metastases. A report of 86 Cases

    No full text
    corecore