1,192 research outputs found
Utility of mass spectrometry for the diagnosis of the unstable coronary plaque.
Mass spectrometry is a powerful technique that is used to identify unknown compounds, to quantify known materials, and to elucidate the structure and chemical properties of molecules. Recent advances in the accuracy and speed of the technology have allowed data acquisition for the global analysis of lipids from complex samples such as blood plasma or serum. Here, mass spectrometry as a tool is described, its limitations explained and its application to biomarker discovery in coronary artery disease is considered. In particular an application of mass spectrometry for the discovery of lipid biomarkers that may indicate plaque morphology that could lead to myocardial infarction is elucidated
A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines
Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications
Complete analysis of the B-cell response to a protein antigen, from in vivo germinal centre formation to 3-D modelling of affinity maturation
Somatic hypermutation of immunoglobulin variable region genes occurs within germinal centres (GCs) and is the process responsible for affinity maturation of antibodies during an immune response. Previous studies have focused almost exclusively on the immune response to haptens, which may be unrepresentative of epitopes on protein antigens. In this study, we have exploited a model system that uses transgenic B and CD4<sup>+</sup> T cells specific for hen egg lysozyme (HEL) and a chicken ovalbumin peptide, respectively, to investigate a tightly synchronized immune response to protein antigens of widely differing affinities, thus allowing us to track many facets of the development of an antibody response at the antigen-specific B cell level in an integrated system <i>in</i> <i>vivo</i>. Somatic hypermutation of immunoglobulin variable genes was analysed in clones of transgenic B cells proliferating in individual GCs in response to HEL or the cross-reactive low-affinity antigen, duck egg lysozyme (DEL). Molecular modelling of the antibody–antigen interface demonstrates that recurring mutations in the antigen-binding site, selected in GCs, enhance interactions of the antibody with DEL. The effects of these mutations on affinity maturation are demonstrated by a shift of transgenic serum antibodies towards higher affinity for DEL in DEL-cOVA immunized mice. The results show that B cells with high affinity antigen receptors can revise their specificity by somatic hypermutation and antigen selection in response to a low-affinity, cross-reactive antigen. These observations shed further light on the nature of the immune response to pathogens and autoimmunity and demonstrate the utility of this novel model for studies of the mechanisms of somatic hypermutation
Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation
Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome
Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption
Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization
Feature selection in the reconstruction of complex network representations of spectral data
Complex networks have been extensively used in the last decade to characterize and analyze complex systems, and they have been recently proposed as a novel instrument for the analysis of spectra extracted from biological samples. Yet, the high number of measurements composing spectra, and the consequent high computational cost, make a direct network analysis unfeasible. We here present a comparative analysis of three customary feature selection algorithms, including the binning of spectral data and the use of information theory metrics. Such algorithms are compared by assessing the score obtained in a classification task, where healthy subjects and people suffering from different types of cancers should be discriminated. Results indicate that a feature selection strategy based on Mutual Information outperforms the more classical data binning, while allowing a reduction of the dimensionality of the data set in two orders of magnitud
The Interaction of Hypotaurine and Other Sulfinates with Reactive Oxygen and Nitrogen Species:A Survey of Reaction Mechanisms
Considerable strides have been made in understanding the oxidative mechanisms involved in the final steps of the cysteine pathway leading to taurine. The oxidation of sulfinates, hypotaurine and cysteine sulfinic acid, to the respective sulfonates, taurine and cysteic acid, has never been associated with any specific enzyme. Conversely, there is strong evidence that in vivo formation of taurine and cysteic acid is the result of sulfinate interaction with a variety of biologically relevant oxidants. In the last decade, many experiments have been performed to understand whether peroxynitrite, nitrogen dioxide and carbonate radical anion could be included in the biologically relevant reactive species capable of oxidizing sulfinates. Thanks to this work, it has been possible to highlight two possible reaction mechanisms (direct and indirect reaction) of sulfinates with reactive oxygen and nitrogen species.The sulfinates oxidation, mediated by peroxynitrite, is an example of both reaction mechanisms: through a two-electron-direct-reaction with peroxynitrite or through a one-electron-indirect-transfer reaction. In the indirect mechanism, the peroxynitrite homolysis releases hydroxyl and nitrogen dioxide radical and in addition the degradation of short-lived adduct formed by peroxynitrite and CO2 can generate carbonate radical anion. The reaction of hypotaurine and cysteine sulfinic acid with peroxynitrite-derived radicals is accompanied by extensive oxygen uptake with the generation of transient intermediates, which can begin a reaction by an oxygen-dependent mechanism with the sulfonates, taurine, and cysteic acid as final products. Due to pulse radiolysis studies, it has been shown that transient sulfonyl radicals (RSO2(•)) have been produced during the oxidation of both sulfinates by one-electron transfer reaction.The purpose is to analyze all the aspects of the reactive mechanism in the sulfinic group oxidation of hypotaurine and cysteine sulfinic acid through the results obtained from our laboratory in recent years
Current challenges in software solutions for mass spectrometry-based quantitative proteomics
This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
MRI of the lung (2/3). Why … when … how?
Background
Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs.
Methods
This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI.
Results
Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future.
Conclusion
This article helps new users to implement appropriate protocols on their own MRI platforms.
Main Messages
• MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners.
• Protocol suggestions based on the available literature facilitate its use for routine
• MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion.
• MRI is an option for paediatrics and science when CT is contra-indicate
A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis
BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF
transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport,
chronic lung infections, inflammation and eventual respiratory failure. With the exception of the
small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is
suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect.
The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy
formulation through preclinical and clinical development.
OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of
1 year in patients with CF.
DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome
complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward
Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1).
Allocation was blinded by masking nebuliser chambers.
SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm,
version 4.6 database.
PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1)
between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group
(≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene
therapy (78 randomised).
INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at
28 (±5)-day intervals over 1 year.
MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1
over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety
measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural
disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a
validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory
markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene
deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and
lower airway potential difference.
RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI)
0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital
capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching
statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective
of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4%
(95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more
mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI.
The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No
difference in treatment-attributable AEs was seen between the placebo and active groups.
CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with
an improvement in lung function, other clinically relevant parameters and bronchial CFTR function,
compared with placebo.
LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by
detectable improvement in patients’ quality of life.
FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency,
the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of
repeated administration.
TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867
- …
