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Abstract

Complex networks have been extensively used in the last decade to characterize and analyze complex systems, and they
have been recently proposed as a novel instrument for the analysis of spectra extracted from biological samples. Yet, the
high number of measurements composing spectra, and the consequent high computational cost, make a direct network
analysis unfeasible. We here present a comparative analysis of three customary feature selection algorithms, including the
binning of spectral data and the use of information theory metrics. Such algorithms are compared by assessing the score
obtained in a classification task, where healthy subjects and people suffering from different types of cancers should be
discriminated. Results indicate that a feature selection strategy based on Mutual Information outperforms the more classical
data binning, while allowing a reduction of the dimensionality of the data set in two orders of magnitude.
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Introduction

The analysis of mass-spectrometrics data [1] is an old technique,

dating back to 1958 [2], which is currently being used in a vast

range of biomedical applications: from proteins [3] and metab-

olites [4] characterization, up to pharmacokinetics [5] and drug

discovery [6]. Recently it has been proposed that the analysis of

spectral data can be efficiently performed by means of complex

network representations [7].

Networks [8,9] are very simple mathematical objects, consti-

tuted by a set of nodes connected by links. Due to their simplicity

and generality, they have become an invaluable tool for the

analysis of complex systems, i.e., systems composed of a large

number of elements interacting in a non-linear fashion, leading to

the appearance of global emergent behaviors [10]. Applications range

from the analysis of the dynamics of the human brain [11], social

networks [12], up to transportation systems [13]. The interested

reader may refer to several reviews that have been recently

published on such topic, like for instance [14,15].

As proposed in Ref. [7], spectral data can be transformed into

networks, where nodes represent spectral measurements, and pairs

of them are connected when their intensities follow a pattern

associated with the disease under study. The structural analysis of

the resulting network allows extracting relevant knowledge about

the relationships between measurements characterizing the disease,

and about their evolution through time. Yet, such direct represen-

tation comes at the cost of a high computational complexity: due to

the high dimensionality of spectral data, which may include

thousands of measurements for each subject, real-time processing

is unfeasible. Furthermore, it is known that spectral data include a

considerable quantity of noisy and irrelevant information, which

make the analysis further challenging.

From the Knowledge Discovery field it is known that a high

dimensionality of the feature space, like the case of large complex

network representations, can make any learning problem more

difficult. Indeed, even if many data mining algorithms attempt to

automatically detect which features are important, and which

features can be eliminated, both theoretical and experimental

studies indicate that many algorithms scale poorly with a large

number of irrelevant features are included [16]. The same

problem is expected when analyzing network representations of

spectral data: important features, e.g. specific topological charac-

teristics, may be masked by the presence of nodes randomly

connected, that is, codifying noise. The classical solution deals with

the inclusion of a pre-processing step before the actual analysis of

data: the feature selection phase [17]. The goal of the numerous

techniques available in the Literature [18–20] is threefold:

reducing the amount of data to be analyzed, center the analysis

only on relevant data, and improve the quality of the data set.

Feature selection has been especially useful in those domains that

entail a large number of measured variables but a very low

number of samples, like, for instance, biological and medical

domains: gene and protein expressions, magnetoencephalographic

and electroencephalographic records, and so forth.

The purpose of this study is to investigate the application of

feature selection techniques in the reconstruction of complex

network representations of spectral data. Three approaches

commonly used in the Literature are investigated: from simple

binning of the spectra, up to the application of information theory

metrics. The effectiveness of such techniques is assessed by

analyzing and comparing the score obtained in a classification
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task, which tries to discriminate control subjects from patients

suffering from different types of cancer. Finally, the characteristics

of the resulting networks are analyzed and discussed.

Materials and Methods

Cancer mass-spectrometrics data
The assessment of the effectiveness of the three feature selection

algorithms has been performed against the ARCENE data set, as

used in the NIPS 2003 feature selection challenge [21]. The

training part of this data set included information for 100 subjects,

56 of them being control (healthy) subjects and 44 corresponding

to people suffering from different kinds of cancers. Each one of

them is described by a vector of 10:000 measurements, represent-

ing mass-spectra obtained with the SELDI technique [22].

Besides of the large number of measurements available for each

subject, the challenge behind this data set resides in the presence of

different types of cancers, i.e. ovarian and prostate cancers [23–

25]. While its study may yield features that are generic of the

separation cancer vs. control across various cancers, it also

requires the classification method to take into account potential

differences in disease, gender, and sample preparation.

Feature selection
In this work, we propose the use of three different techniques for

selecting a subset of the original 10:000 features that will be used in

the classification process. The three techniques, as described in the

remainder of this Section, have been selected due to their

widespread use in spectra pre-processing and analysis. In addition,

and in order to estimate the optimal network size required by each

feature selection algorithm, four different network sizes have been

considered: ns~300, 100, 50 and 25 nodes.

The first feature selection technique here discussed is the binning

of the data set, a technique widely used in the analysis of metabolic

spectra [26,27]. The original spectra were divided into sequential,

non-overlapping regions; each one of these regions is converted

into a new feature, whose value corresponds to the average of all

measurements included in it.

The other two considered techniques are based on Mutual

Information (MI for short), a well-known measure of mutual

dependance between random variables [28], which has been

extensively used for the selection of relevant features in a data set-

see, for instance, Refs. [29–31]. Given two random variables x

and y, the two marginal probabilities distribution functions, p(x)
and p(y), and the joint probability distribution function p(x,y), the

mutual information I between x and y is defined as:

Ix,y~
Xm

l~1

Xm

k~1

p(xl ,yk) log2

p(xl ,yk)

p(xl)p(yk)

� �
: ð1Þ

Figure 1. Reconstruction of the link weight between measure-
ments 2 and 7. Green squares (red circles) represent the values of
these two measurements for control and cancer subjects. The blue
triangle corresponds to an unlabeled subject. Values correspond to the
ns~100 data set obtained through MI feature selection.
doi:10.1371/journal.pone.0072045.g001

Figure 2. Example of reconstructed networks. Left (Right) graph depicts the network corresponding to a control subject (patient), for 25 bins
selected in decreasing Mutual Information order. Nodes color and size represent their degree, while link color codifies the corresponding strength.
For sake of clarity, only links with strength greater than 0:8 are represented.
doi:10.1371/journal.pone.0072045.g002

Feature Selection in Spectral Complex Networks

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e72045



I measures, in bits, how much information is shared by two

variables, i.e., how much the knowledge of one of them reduces

the uncertainty about the other. In order to rank each feature

included in the original data set, we create a metric assessing the

average information shared by one feature with all the others:

Si~
1

n

X
k

Ii,k: ð2Þ

At this point, there are two different possible approaches for

selecting features based on their value of S. The first one, also

known as the principle of minimal redundancy [31], states that the

selected features should share the minimum amount of informa-

tion between them, thus ensuring that the addition of a new

feature provides new information to the classification process. This

is equivalent to selecting features with small S, or to sorting them

in an increasing order of S. On the other hand, it is known that

measurements obtained through mass spectrometry are charac-

terized by a high degree of noise. When a measurement is

representing noise, and thus no valuable information for the

analysis, the quantity of information it shares with other

measurements is expected to be small. Therefore, features with

low S may codify no relevant information, while those associated

with high S may form groups of highly correlated, and yet

meaningful features.

Following these criteria, two different strategies are here

compared for selecting features based on Mutual Information:

select the ns nodes with higher S, and the ns nodes with lower S.

Table 1. Resume of the best classification scores.

Average Mutual Information (high S) Mutual Information (low S)

300 nodes 0.8 0.8 0.8

100 nodes 0.82 0.93 0.89

50 nodes 0.82 0.76 0.75

25 nodes 0.74 0.75 0.73

doi:10.1371/journal.pone.0072045.t001

Figure 3. Classification scores as a function of the number of nodes and of the applied threshold. Black, blue and green lines
respectively represent the classification score (precision) obtained by averaged bins, and by measurements selected in decreasing and increasing
Mutual Information order.
doi:10.1371/journal.pone.0072045.g003
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Network creation and characterization
The information available for each subject is here represented

and analyzed by means of a complex network [8,9], following the

methodology recently proposed in Ref. [7]. A network is created

for each subject, representing his/her healthy status; within this

network, each node represents one of the selected measurements,

as obtained by the three studied feature selection algorithms

previously described, and links between pairs of nodes are created

whenever the corresponding measurements exhibit characteristics

found in patients. In what follow, such reconstruction technique is

briefly described: the interested reader may refer to Ref. [7] for

further details.

The methodology starts by associating a node to each one of the

measurements available in the data set (or to each bin, in the case

of data the first feature selection algorithm previously proposed).

Links between pairs of nodes are created whenever the two

corresponding measurements show a behavior consistent with a

model extracted from cancer subjects, and sufficiently different

from a model representing control subjects. These two models can

be easily constructed by means of a linear correlation between

pairs of measurements corresponding to control and cancer

groups. Specifically, we linearly fit the values of the two

measurements (in what follows, i and j) for both groups of labeled

subjects:

cj~acizbze

dj~a’dizb’ze’: ð3Þ

c and d respectively represent data corresponding to control and

cancer subjects, i and j being the values of their i-th and j-th

measurements. Furthermore a and a’ are the slopes of the two

lineal fits (respectively, for the control and patient groups), b and b’
the two intercepts, and e and e’ two vectors with the residuals of

the fits. This step is represented in Fig. 1: green squares (red circles)

represent the pairs of values under analysis for control subjects

(subjects suffering from cancer), and green and red dashed lines

the best lineal fit for each group. Notice that these lines represent

the expected behavior of the two measurements under analysis in

each group of data, i.e. the models that describe the expected

relationship between pairs of measurement in control subjects and

patients respectively. The problem of the creation of a link

between these two measurements for a new subject is then

equivalent to the identification of the model (line) to which his/her

values are closer. The position of such unlabeled subject is

indicated in Fig. 1 by the blue triangle. Two arrows, in red and

green, represent the distance of this new subject from lineal fits

corresponding to cancer and control subjects.

Taking into account the distance of the new subject from both

models, and the corresponding expected error in the lineal fit

(given by the standard deviation of residuals), the probability ~ppc

Figure 4. F-measure as a function of the number of nodes and of the applied threshold. Black, blue and green lines respectively represent
the classification score (precision) obtained by averaged bins, and by measurements selected in decreasing and increasing Mutual Information order.
See main text for the definition of the F-measure.
doi:10.1371/journal.pone.0072045.g004
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(~ppd ) for the unlabeled subject of pertaining to the control (patient)

group is proportional to the value of the corresponding normal

distribution at the point defined by the second measurement (in

Fig. 1, measurement 7). As the unlabeled subject must be classified

into one of the two classes, the final probability of belonging to the

patient class is given by the normalization:

pd~
~ppd

~ppcz~ppd

: ð4Þ

pd therefore represents the likelihood for the relation between the

two analyzed measurements of the unlabeled subject to belong to

the model extracted from the cancer group. When this process is

repeated for all n2 pairs of nodes, the result is a weighted clique,

i.e. a weighted fully-connected network, representing the subject

under study.

Fig. 2 reports the graphical representation of two networks

created by means of the described methodology, corresponding to

a control subject (Left) and a patient (Right), after the most

important 25 features have been selected by means of a decreasing

Mutual Information feature selection schema. For the sake of

clarity, only links with strength greater than 0:8 are represented.

These two examples already show important differences in the

structures characterizing control subjects and patients, e.g. the

higher number of links present in the patient network.

In order to analyze in a more systematical way this resulting

clique, we apply the method proposed in Ref. [32], which involves

two steps: (i) apply different thresholds to the weighted clique, in

order to obtain different unweighted networks of different link

densities, and (ii) extract a large set of topological metrics from

each one of them. Such topological metrics are then fed inside

different classification algorithms, with the aim of distinguish

between healthy and cancer subjects.

Results and Discussion

Fig. 3 shows the classification score, expressed by means of the

precision of the classification, as a function of the applied threshold

and in the different scenarios here analyzed. Specifically, each

image composing Fig. 3 reports the results corresponding to the

four network sizes here considered: from left to right, top to

bottom, ns~300, 100, 50 and 25. Furthermore, inside each graph

the three lines represent the score associated to the network

representation created by means of the three feature selection

algorithms here considered: average binning, measurements with

high S, and measurements with low S. In this case, the selection

has been performed by means of a Support Vector Machine algorithm

[33], due to its simplicity and its effectiveness in identifying

relevant network metrics [32]. Fig. 4 reports the quality of the

classification expressed in terms of the F-measure [34], defined as:

F{measure~2
precision:recall

precisionzrecall
, ð5Þ

recall being the number of correct results divided by the number of

results that should have been returned. While some minor

Figure 5. Area under the ROC curve, as a function of the number of nodes and of the applied threshold. Black, blue and green lines
respectively represent the classification score (precision) obtained by averaged bins, and by measurements selected in decreasing and increasing
Mutual Information order.
doi:10.1371/journal.pone.0072045.g005
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differences can be detected, especially in the behavior of the

classification with 100 nodes, a general agreement between Figs. 3

and 4 is observed.

In order to validate such results, and exclude their dependence

on the chosen classification algorithm, Fig. 5 represents the

classification score obtained by means of Probabilistic Neural Networks

[35,36]. In this case, the result is given as the area under the ROC

curve [37], which allows analyzing the performance of binary

classifier systems whose output is expressed as a probability.

Finally, Table 1 reports a resume of the results, i.e. of the best

classification score obtained as a function of the number of features

included in the analysis (in this case, the number of nodes

constituting the networks), and the feature selection algorithm

applied. Several conclusions can be drawn from these results.

First of all, reducing the number of measurements included in

the analysis improves the classification score. Clearly, reducing the

dimensionality of the data set under analysis allows limiting the

quantity of noise, i.e. irrelevant information, included in it, thus

simplifying the classification task. Furthermore, reducing the

number of features beyond a given threshold results in a drop in

the effectiveness of the classification; this also has to be expected,

in that important information for the task may be deleted. Such

threshold is higher in the case of MI-based feature selection

algorithms, which display their maximum for networks of 100
nodes.

MI-based feature selection algorithms are more effective than a

feature reduction based on binning, as shown by the higher

classification scores (0:93 vs. 0:82). This indicates that creating bins

by averaging the measurements inside sequential regions, while a

common practice in the study of biological spectra, may result in

the deletion of important information, which can be codified in

very small windows or even in single measurements. While MI-

based feature selection strategies always yield better results, the

best solutions are obtained by selecting measurements with higher

S. Therefore, the important information is codified within few

measurements that are highly correlated between them; on the

contrary, selecting measurements according to a minimal redundancy

strategy seems to introduce a high amount of noise in the

classification task, reducing the discrimination power.

Besides its intrinsic value, the score obtained in the classification

task also provides information about the best network represen-

tation: such information, in turns, can be used to understand

which are the relationships between measurements that charac-

terize the disease under study. A closer look at Figs. 3 and 5

suggests that there is a common pattern in the evolution of

classification scores and areas under the ROC curve. Specifically,

two local maxima are usually present, one corresponding to low

thresholds (between 0:1 and 0:3), and a second one to high

threshold values (between 0:7 and 0:9). This pattern is consistent

across different network sizes, and is especially relevant in the case

of networks whose nodes are measurements with high S. In this

case, the correlation between the score curve (Fig. 3) and the

corresponding area under the ROC curve (Fig. 5) lies within the

interval ½0:48,0:6�, while the correlation between the scores

obtained by different network sizes lies between 0:42 and 0:62.

Such maxima are associated to different network topologies, and

to different topological metrics. Specifically, when a low threshold

is applied, most links are present in the network, creating a dense

graph; in such cases, it is possible to analyze local structures, like

for instance motifs [38], thus providing information about the

micro-scale interactions between a small number of measure-

ments. On the other hand, when a high threshold is applied, the

resulting networks have a sparse structure, which does not allow

the identification of micro-structures; on the contrary, most

information is codified in the macroscopic structure of the

networks, with metrics like diameter of the network [8,9] of their

modular structure [39] being the most important.

Conclusions

The present study compares the application of three different

feature selection algorithms to the analysis of mass-spectrometrics

data by means of complex networks. Due to the high dimension-

ality of the initial data set, comprising 10:000 different measure-

ments for each subject, a direct network representation of such

data would be unfeasible, by reason of the extremely high

computational cost associated to the analysis of graphs with

thousands of nodes. Furthermore, it is known that spectral data

contain a high quantity of redundant and noisy information, which

can be safely eliminated, and whose presence may even reduce the

discrimination capability of a classification algorithm. While

commonly used in the Literature, our results indicate that binning

the spectrum, i.e. considering the average of sequential non-

overlapping regions, yields to a destruction of relevant informa-

tion. On the contrary, a MI-based feature selection algorithm can

be used to safely reduce the number of measurements, and

therefore of nodes in the network representation, in two orders of

magnitude.
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