859 research outputs found

    Synthesis and evaluation of a (125)I-labeled iminodihydroquinoline-derived tracer for imaging of voltage-gated sodium channels

    Get PDF
    In vivo imaging of voltage-gated sodium channels (VGSCs) can potentially provide insights into the activation of neuronal pathways and aid the diagnosis of a number of neurological diseases. The iminodihydroquinoline WIN17317-3 is one of the most potent sodium channel blockers reported to date and binds with high affinity to VGSCs throughout the rat brain. We have synthesized a (125)I-labeled analogue of WIN17317-3 and evaluated the potential of the tracer for imaging of VGSCs with SPECT. Automated patch clamp studies with CHO cells expressing the Nav1.2 isoform and displacement studies with [(3)H]BTX yielded comparable results for the non-radioactive iodinated iminodihydroquinoline and WIN17317-3. However, the (125)I-labeled tracer was rapidly metabolized in vivo, and suffered from low brain uptake and high accumulation of radioactivity in the intestines. The results suggest that iminodihydroquinolines are poorly suited for tracer development

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    Epigenetics provides a new generation of oncogenes and tumour-suppressor genes

    Get PDF
    Cancer is nowadays recognised as a genetic and epigenetic disease. Much effort has been devoted in the last 30 years to the elucidation of the ‘classical' oncogenes and tumour-suppressor genes involved in malignant cell transformation. However, since the acceptance that major disruption of DNA methylation, histone modification and chromatin compartments are a common hallmark of human cancer, epigenetics has come to the fore in cancer research. One piece is still missing from the story: are the epigenetic genes themselves driving forces on the road to tumorigenesis? We are in the early stages of finding the answer, and the data are beginning to appear: knockout mice defective in DNA methyltransferases, methyl-CpG-binding proteins and histone methyltransferases strongly affect the risk of cancer onset; somatic mutations, homozygous deletions and methylation-associated silencing of histone acetyltransferases, histone methyltransferases and chromatin remodelling factors are being found in human tumours; and the first cancer-prone families arising from germline mutations in epigenetic genes, such as hSNF5/INI1, have been described. Even more importantly, all these ‘new' oncogenes and tumour-suppressor genes provide novel molecular targets for designed therapies, and the first DNA-demethylating agents and inhibitors of histone deacetylases are reaching the bedside of patients with haematological malignancies

    Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data

    Get PDF
    Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was not part of the training sample

    Disentangling the effects of sex, life history and genetic background in Atlantic salmon: growth, heart and liver under common garden conditions

    Get PDF
    Livestock domestication has long been a part of agriculture, estimated to have first occurred approximately 10 000 years ago. Despite the plethora of traits studied, there is little understanding of the possible impacts domestication has had on internal organs, which are key determinants of survival. Moreover, the genetic basis of observed associated changes in artificial environments is still puzzling. Here we examine impacts of captivity on two organs in Atlantic salmon (Salar salar) that have been domesticated for approximately 50 years: heart and liver, in addition to growth. We studied multiple families of wild, domesticated, F1 and F2 hybrid, and backcrossed strains of S. salar in replicated common garden tanks during the freshwater and marine stages of development. Heart and liver weight were investigated, along with heart morphology metrics examined in just the wild, domesticated and F1 hybrid strains (heart height and width). Growth was positively linked with the proportion of the domesticated strain, and recombination in F2 hybrids (and the potential disruption of co-adapted gene complexes) did not influence growth. Despite the influence of domestication on growth, we found no evidence for domestication-driven divergence in heart or liver morphology. However, sexual dimorphism was detected in heart morphology, and after controlling for body size, females exhibited significantly larger heart weight and heart width when compared with males. Wild females also had an increased heart height when compared with wild males, and this was not observed in any other strain. Females sampled in saltwater showed significantly larger heart height with rounder hearts, than saltwater males. Collectively, these results demonstrate an additive basis of growth and, despite a strong influence of domestication on growth, no clear evidence of changes in heart or liver morphology associated with domestication was identifie

    Phosphodiesterase Inhibition Increases CREB Phosphorylation and Restores Orientation Selectivity in a Model of Fetal Alcohol Spectrum Disorders

    Get PDF
    Background: Fetal alcohol spectrum disorders (FASD) are the leading cause of mental retardation in the western world and children with FASD present altered somatosensory, auditory and visual processing. There is growing evidence that some of these sensory processing problems may be related to altered cortical maps caused by impaired developmental neuronal plasticity. Methodology/Principal Findings: Here we show that the primary visual cortex of ferrets exposed to alcohol during the third trimester equivalent of human gestation have decreased CREB phosphorylation and poor orientation selectivity revealed by western blotting, optical imaging of intrinsic signals and single-unit extracellular recording techniques. Treating animals several days after the period of alcohol exposure with a phosphodiesterase type 1 inhibitor (Vinpocetine) increased CREB phosphorylation and restored orientation selectivity columns and neuronal orientation tuning. Conclusions/Significance: These findings suggest that CREB function is important for the maturation of orientation selectivity and that plasticity enhancement by vinpocetine may play a role in the treatment of sensory problems in FASD

    Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (<it>Lontra provocax</it>).</p> <p>Results</p> <p>We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total) in 75 samples of <it>L. provocax </it>from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for <it>L. provocax </it>in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC) region (43°38' to 53°08'S), whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes.</p> <p>Conclusions</p> <p>Our data support the hypothesis of the persistence of <it>L. provocax </it>in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude). This limit also corresponds to a strong environmental change, which might have spurred <it>L. provocax </it>differentiation between the two environments.</p

    Quantitative Analysis of Vasodilatory Action of Quercetin on Intramural Coronary Resistance Arteries of the Rat In Vitro

    Get PDF
    Background: Dietary quercetin improves cardiovascular health, relaxes some vascular smooth muscle and has been demonstrated to serve as a substrate for the cyclooxygenase enzyme. Aims: 1. To test quantitatively a potential direct vasodilatory effect on intramural coronary resistance artery segments, in different concentrations. 2. To scale vasorelaxation at different intraluminal pressure loads on such vessels of different size. 3. To test the potential role of prostanoids in vasodilatation induced by quercetin. Methods: Coronary arterioles (70-240 mu m) were prepared from 24 rats and pressurized in PSS, using a pressure microangiometer. Results: The spontaneous tone that developed at 50 mmHg was relaxed by quercetin in the 10(-9) moles/lit concentration (p<0.05), while 10(-5) moles/lit caused full relaxation. Significant relaxation was observed at all pressure levels (10-100 mmHg) at 10(-7) moles/lit concentration of quercetin. The cyclooxygenase blocker indomethacin (10(-5) moles/lit) induced no relaxation but contraction when physiological concentrations of quercetin were present in the tissue bath (p<0.02 with Anova), this contraction being more prominent in smaller vessels and in the higher pressure range (p<0.05, Pearson correlation). A further 2-8% contraction could be elicited by the NO blocker L-NAME (10(-4) moles/lit). Conclusion: These results demonstrate that circulating levels of quercetin (10(-7) moles/lit) exhibit a substantial coronary vasodilatory effect. The extent of it is commeasurable with that of several other physiological mechanisms of coronary blood flow control. At least part of this relaxation is the result of an altered balance toward the production of endogenous vasodilatory prostanoids in the coronary arteriole wall

    Detection methods predict differences in biology and survival in breast cancer patients

    Get PDF
    BackgroundThe aim of this study was to measure the biological characteristics involved in tumorigenesis and the progression of breast cancer in symptomatic and screen-detected carcinomas to identify possible differences.MethodsFor this purpose, we evaluated clinical-pathological parameters and proliferative and apoptotic activities in a series of 130 symptomatic and 161 screen-detected tumors.ResultsAfter adjustment for the smaller size of the screen-detected carcinomas compared with symptomatic cancers, those detected in the screening program presented longer disease-free survival (RR = 0.43, CI = 0.19-0.96) and had high estrogen and progesterone receptor concentrations more often than did symptomatic cancers (OR = 3.38, CI = 1.72-6.63 and OR = 3.44, CI = 1.94-6.10, respectively). Furthermore, the expression of bcl-2, a marker of good prognosis in breast cancer, was higher and HER2/neu expression was lower in screen-detected cancers than in symptomatic cancers (OR = 1.77, CI = 1.01-3.23 and OR = 0.64, CI = 0.40-0.98, respectively). However, when comparing prevalent vs incident screen-detected carcinomas, prevalent tumors were larger (OR = 2.84, CI = 1.05-7.69), were less likely to be HER2/neu positive (OR = 0.22, CI = 0.08-0.61) and presented lower Ki67 expression (OR = 0.36, CI = 0.17-0.77). In addition, incident tumors presented a shorter survival time than did prevalent ones (RR = 4.88, CI = 1.12-21.19).ConclusionsIncident carcinomas include a variety of screen-detected carcinomas that exhibit differences in biology and prognosis relative to prevalent carcinomas. The detection method is important and should be taken into account when making therapy decisions

    Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone

    Get PDF
    The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotesThis work was supported by the Spanish Ministerio de Economía y Competitividad-FEDER (BFU2014-5863-1P)S
    corecore