394 research outputs found
The genetics of mate preferences in hybrids between two young and sympatric Lake Victoria cichlid species
The genetic architecture of mate preferences is likely to affect significant evolutionary processes, including speciation and hybridization. Here, we investigate laboratory hybrids between a pair of sympatric Lake Victoria cichlid fish species that appear to have recently evolved from a hybrid population between similar predecessor species. The species demonstrate strong assortative mating in the laboratory, associated with divergent male breeding coloration (red dorsum versus blue). We show in a common garden experiment, using DNA-based paternity testing, that the strong female mate preferences among males of the two species are fully recovered in a large fraction of their F2 hybrid generation. Individual hybrid females often demonstrated consistent preferences in multiple mate choice trials (more than or equal to five) across a year or more. This result suggests that female mate preference is influenced by relatively few major genes or genomic regions. These preferences were not changed by experience of a successful spawning event with a male of the non-preferred species in a no-choice single-male trial. We found no evidence for imprinting in the F2 hybrids, although the F1 hybrid females may have been imprinted on their mothers. We discuss this nearly Mendelian inheritance of consistent innate mate preferences in the context of speciation theory
Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping
<p>Abstract</p> <p>Background</p> <p>Recent developments in SNP discovery and high throughput genotyping technology have made the use of high-density SNP markers to predict breeding values feasible. This involves estimation of the SNP effects in a training data set, and use of these estimates to evaluate the breeding values of other 'evaluation' individuals. Simulation studies have shown that these predictions of breeding values can be accurate, when training and evaluation individuals are (closely) related. However, many general applications of genomic selection require the prediction of breeding values of 'unrelated' individuals, i.e. individuals from the same population, but not particularly closely related to the training individuals.</p> <p>Methods</p> <p>Accuracy of selection was investigated by computer simulation of small populations. Using scaling arguments, the results were extended to different populations, training data sets and genome sizes, and different trait heritabilities.</p> <p>Results</p> <p>Prediction of breeding values of unrelated individuals required a substantially higher marker density and number of training records than when prediction individuals were offspring of training individuals. However, when the number of records was 2*N<sub>e</sub>*L and the number of markers was 10*N<sub>e</sub>*L, the breeding values of unrelated individuals could be predicted with accuracies of 0.88 – 0.93, where N<sub>e </sub>is the effective population size and L the genome size in Morgan. Reducing this requirement to 1*N<sub>e</sub>*L individuals, reduced prediction accuracies to 0.73–0.83.</p> <p>Conclusion</p> <p>For livestock populations, 1N<sub>e</sub>L requires about ~30,000 training records, but this may be reduced if training and evaluation animals are related. A prediction equation is presented, that predicts accuracy when training and evaluation individuals are related. For humans, 1N<sub>e</sub>L requires ~350,000 individuals, which means that human disease risk prediction is possible only for diseases that are determined by a limited number of genes. Otherwise, genotyping and phenotypic recording need to become very common in the future.</p
Sexual selection protects against extinction
Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress
Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles
Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic trade-offs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity
Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix
With the availability of high density whole-genome single nucleotide polymorphism chips, genomic selection has become a promising method to estimate genetic merit with potentially high accuracy for animal, plant and aquaculture species of economic importance. With markers covering the entire genome, genetic merit of genotyped individuals can be predicted directly within the framework of mixed model equations, by using a matrix of relationships among individuals that is derived from the markers. Here we extend that approach by deriving a marker-based relationship matrix specifically for the trait of interest
Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise
Background: Inbred individuals reared in controlled environments display considerable variance in many complex traits but the underlying cause of this intangible variation has been an enigma. Here we show that two modifiers of epigenetic gene silencing play a critical role in the process.Results: Inbred mice heterozygous for a null mutation in DNA methyltransferase 3a (Dnmt3a) or tripartite motif protein 28 (Trim28) show greater coefficients of variance in body weight than their wild-type littermates. Trim28 mutants additionally develop metabolic syndrome and abnormal behavior with incomplete penetrance. Genome-wide gene expression analyses identified 284 significantly dysregulated genes in Trim28 heterozygote mutants compared to wild-type mice, with Mas1, which encodes a G-protein coupled receptor implicated in lipid metabolism, showing the greatest average change in expression (7.8-fold higher in mutants). This gene also showed highly variable expression between mutant individuals.Conclusions: These studies provide a molecular explanation of developmental noise in whole organisms and suggest that faithful epigenetic control of transcription is central to suppressing deleterious levels of phenotypic variation. These findings have broad implications for understanding the mechanisms underlying sporadic and complex disease in humans
The distribution of genetic diversity in a Brassica oleracea gene bank collection related to the effects on diversity of regeneration, as measured with AFLPs
The ex situ conservation of plant genetic resources in gene banks involves the selection of accessions to be conserved and the maintenance of these accessions for current and future users. Decisions concerning both these issues require knowledge about the distribution of genetic diversity within and between accessions sampled from the gene pool, but also about the changes in variation of these samples as a result of regenerations. These issues were studied in an existing gene bank collection of a cross-pollinating crop using a selection of groups of very similar Dutch white cabbage accessions, and additional groups of reference material representing the Dutch, and the global white cabbage gene pool. Six accessions were sampled both before and after a standard regeneration. 30 plants of each of 50 accessions plus 6 regeneration populations included in the study were characterised with AFLPs, using scores for 103 polymorphic bands. It was shown that the genetic changes as a result of standard gene bank regenerations, as measured by AFLPs, are of a comparable magnitude as the differences between some of the more similar accessions. The observed changes are mainly due to highly significant changes in allele frequencies for a few fragments, whereas for the majority of fragments the alleles occur in similar frequencies before and after regeneration. It is argued that, given the changes of accessions over generations, accessions that display similar levels of differentiation may be combined safely
The influence of systemic inflammation, dietary intake and stage of disease on rate of weight loss in patients with gastro-oesophageal cancer
Although weight loss is often a dominant symptom in patients with upper gastrointestinal malignancy, there is a lack of objective evidence describing changes in nutritional status and potential associations between weight loss, food intake, markers of systemic inflammation and stage of disease in such patients. Two hundred and twenty patients diagnosed with gastric/oesophageal cancer were studied. Patients underwent nutritional assessment consisting of calculation of body mass index, measurement of weight loss, dysphagia scoring and estimation of dietary intake. Serum acute-phase protein concentrations were determined by enzyme-linked immunosorbent assay. In all, 182 (83%) patients had lost weight at diagnosis (median loss, 7% body weight). Weight loss was associated with poor performance status, advanced disease stage, dysphagia, reduced dietary intake and elevated serum C-reactive protein (CRP) concentrations. Multiple regression identified dietary intake (estimate of effect, 38%), serum CRP concentrations (estimate of effect, 34%) and stage of disease (estimate of effect, 28%) as independent variables in determining degree of weight loss. Mechanisms other than reduced dietary intake or mechanical obstruction by the tumour appear to be involved in the nutritional decline in patients with gastro-oesophageal malignancy. Recognition that systemic inflammation plays a role in nutritional depletion may inform the development of appropriate therapeutic strategies to ameliorate weight loss, making patients more tolerant of cancer-modifying treatments such as chemotherapy
Elevated tumour interleukin-1β is associated with systemic inflammation: a marker of reduced survival in gastro-oesophageal cancer
Systemic inflammation is associated with adverse prognosis cancer but its aetiology remains unclear. We investigated the expression of proinflammatory cytokines within normal mucosa from healthy controls and tumour tissue in cancer patients and related these levels with markers of systemic inflammation and with the presence of a tumour inflammatory infiltrate. Tissue was collected from 56 patients with gastro-oesophageal cancer and from 12 healthy controls. Tissue cytokine mRNA concentrations were measured by real-time PCR and tissue protein concentrations by cytometric bead array. The degree of chronic inflammatory cell infiltrate was recorded. Serum cytokine and acute phase protein concentrations (including C-reactive protein (CRP)) were measured by enzyme-linked immunosorbent assay. Proinflammatory cytokines were significantly overexpressed (interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor-α) both at mRNA and protein levels in the cancer specimens compared with mucosa from controls. Interleukin-1β was expressed in greatest (10–100-fold) concentration and protein levels correlated significantly with systemic inflammation (CRP) (P=0.05, r=0.31). A chronic inflammatory infiltrate was observed in 75% of the cancer specimens and was associated with systemic inflammation (CRP: P=0.01). However, the presence of chronic inflammation per se was not associated with altered cytokine expression within the tumour. Both a chronic inflammatory infiltrate and systemic inflammation (CRP) were associated with reduced survival (P=0.05 and P=0.03, respectively). Tumour chronic inflammatory infiltrate and tumour tissue IL-1β overexpression are potential independent factors influencing systemic inflammation in oesophagogastric cancer patients
Within- and across-breed genomic prediction using whole-genome sequence and single nucleotide polymorphism panels
International audienceBackground Currently, genomic prediction in cattle is largely based on panels of about 54k single nucleotide polymorphisms (SNPs). However with the decreasing costs of and current advances in next-generation sequencing technologies, whole-genome sequence (WGS) data on large numbers of individuals is within reach. Availability of such data provides new opportunities for genomic selection, which need to be explored.MethodsThis simulation study investigated how much predictive ability is gained by using WGS data under scenarios with QTL (quantitative trait loci) densities ranging from 45 to 132 QTL/Morgan and heritabilities ranging from 0.07 to 0.30, compared to different SNP densities, with emphasis on divergent dairy cattle breeds with small populations. The relative performances of best linear unbiased prediction (SNP-BLUP) and of a variable selection method with a mixture of two normal distributions (MixP) were also evaluated. Genomic predictions were based on within-population, across-population, and multi-breed reference populations.ResultsThe use of WGS data for within-population predictions resulted in small to large increases in accuracy for low to moderately heritable traits. Depending on heritability of the trait, and on SNP and QTL densities, accuracy increased by up to 31 %. The advantage of WGS data was more pronounced (7 to 92 % increase in accuracy depending on trait heritability, SNP and QTL densities, and time of divergence between populations) with a combined reference population and when using MixP. While MixP outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP was as good as MixP when QTL density increased to 132 QTL/Morgan.ConclusionsOur results show that, genomic predictions in numerically small cattle populations would benefit from a combination of WGS data, a multi-breed reference population, and a variable selection method
- …