260 research outputs found

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    Matching Models Across Abstraction Levels with Gaussian Processes

    Get PDF
    Biological systems are often modelled at different levels of abstraction depending on the particular aims/resources of a study. Such different models often provide qualitatively concordant predictions over specific parametrisations, but it is generally unclear whether model predictions are quantitatively in agreement, and whether such agreement holds for different parametrisations. Here we present a generally applicable statistical machine learning methodology to automatically reconcile the predictions of different models across abstraction levels. Our approach is based on defining a correction map, a random function which modifies the output of a model in order to match the statistics of the output of a different model of the same system. We use two biological examples to give a proof-of-principle demonstration of the methodology, and discuss its advantages and potential further applications.Comment: LNCS forma

    Testing in the incremental design and development of complex products

    Get PDF
    Testing is an important aspect of design and development which consumes significant time and resource in many companies. However, it has received less research attention than many other activities in product development, and especially, very few publications report empirical studies of engineering testing. Such studies are needed to establish the importance of testing and inform the development of pragmatic support methods. This paper combines insights from literature study with findings from three empirical studies of testing. The case studies concern incrementally developed complex products in the automotive domain. A description of testing practice as observed in these studies is provided, confirming that testing activities are used for multiple purposes depending on the context, and are intertwined with design from start to finish of the development process, not done after it as many models depict. Descriptive process models are developed to indicate some of the key insights, and opportunities for further research are suggested

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    FACTS AND IDEAS IN MODERN COSMOLOGY

    Full text link
    A review of the principles of observational testing of cosmological theories is given with a special emphasis on the distinction between observational facts and theoretical hypotheses. A classification of modern cosmological theories and possible observational tests for these theories is presented. The main rival cosmological models are analyzed from the point of view of observational testing of their initial hypothesis. A comparison of modern observational data with theoretical predictions is presented. In particular we discuss in detail the validity of the two basic assumptions of modern cosmology that are the Cosmological Principle and the Expanding Space Paradigm. It is found that classical paradigms need to be reanalyzed and that it is necessary to develop crucial cosmological tests to discriminate alternative theories.Comment: 84 pages, latex, figures are available to F.S.L ([email protected]). Accepted for publication in Vistas In astronomy, Vol.38, Part.4, 199

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    Puzzle based teaching versus traditional instruction in electrocardiogram interpretation for medical students – a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most medical professionals are expected to possess basic electrocardiogram (EKG) interpretation skills. But, published data suggests that residents' and physicians' EKG interpretation skills are suboptimal. Learning styles differ among medical students; individualization of teaching methods has been shown to be viable and may result in improved learning. Puzzles have been shown to facilitate learning in a relaxed environment. The objective of this study was to assess efficacy of teaching puzzle in EKG interpretation skills among medical students.</p> <p>Methods</p> <p>This is a reader blinded crossover trial. Third year medical students from College of Human Medicine, Michigan State University participated in this study. Two groups (n = 9) received two traditional EKG interpretation skills lectures followed by a standardized exam and two extra sessions with the teaching puzzle and a different exam. Two other groups (n = 6) received identical courses and exams with the puzzle session first followed by the traditional teaching. EKG interpretation scores on final test were used as main outcome measure.</p> <p>Results</p> <p>The average score after only traditional teaching was 4.07 ± 2.08 while after only the puzzle session was 4.04 ± 2.36 (p = 0.97). The average improvement after the traditional session was followed up with a puzzle session was 2.53 ± 1.94 while the average improvement after the puzzle session was followed with the traditional session was 2.08 ± 1.73 (p = 0.67). The final EKG exam score for this cohort (n = 15) was 84.1 compared to 86.6 (p = 0.22) for a comparable sample of medical students (n = 15) at a different campus.</p> <p>Conclusion</p> <p>Teaching EKG interpretation with puzzles is comparable to traditional teaching and may be particularly useful for certain subgroups of students. Puzzle session are more interactive and relaxing, and warrant further investigations on larger scale.</p

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Managing software engineers and their knowledge

    Get PDF
    This chapter begins by reviewing the history of software engineering as a profession, especially the so-called software crisis and responses to it, to help focus on what it is that software engineers do. This leads into a discussion of the areas in software engineering that are problematic as a basis for considering knowledge management issues. Some of the previous work on knowledge management in software engineering is then examined, much of it not actually going under a knowledge management title, but rather “learning” or “expertise”. The chapter goes on to consider the potential for knowledge management in software engineering and the different types of knowledge management solutions and strategies that might be adopted, and it touches on the crucial importance of cultural issues. It concludes with a list of challenges that knowledge management in software engineering needs to address

    The longitudinal relationship between job mobility, perceived organizational justice, and health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main purpose of the present study was to examine the 2-year longitudinal and reciprocal relationship between job mobility and health and burnout. A second aim was to elucidate the effects of perceived organizational justice and turnover intentions on the relationship between job mobility (non-, internally and externally mobile), and health (SF-36) and burnout (CBI).</p> <p>Methods</p> <p>The study used questionnaire data from 662 Swedish civil servants and the data were analysed with Structural Equation Modeling statistical methods.</p> <p>Results</p> <p>The results showed that job mobility was a better predictor of health and burnout, than health and burnout were as predictors of job mobility. The predictive effects were most obvious for psychosocial health and burnout, but negligible as far as physical health was concerned. Organizational justice was found to have a direct impact on health, but not on job mobility; whereas turnover intentions had a direct effect on job mobility.</p> <p>Conclusion</p> <p>The predictive relationship between job mobility and health has practical implications for health promotive actions in different organizations.</p
    corecore