107 research outputs found

    Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control

    Get PDF
    Engineering the spectral properties of fluorophores, such as the enhancement of luminescence intensity, can be achieved through coupling with surface plasmons in metallic nanostructures This process, referred to as metal-enhanced fluorescence, offers promise for a range of applications, including LEDs, sensor technology, microarrays and single-molecule studies. It becomes even more appealing when applied to colloidal semiconductor nanocrystals, which exhibit size-dependent optical properties, have high photochemical stability, and are characterized by broad excitation spectra and narrow emission bands. Other approaches have relied upon the coupling of fluorophores (typically organic dyes) to random distributions of metallic nanoparticles or nanoscale roughness in metallic films. Here, we develop a new strategy based on the highly reproducible fabrication of ordered arrays of gold nanostructures coupled to CdSe/ZnS nanocrystals dispersed in a polymer blend. We demonstrate the possibility of obtaining precise control and a high spatial selectivity of the fluorescence enhancement process

    The Seascape of Demersal Fish Nursery Areas in the North Mediterranean Sea, a First Step Towards the Implementation of Spatial Planning for Trawl Fisheries

    Get PDF
    The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem approach to fisheries management and with the requirements of the Marine Strategy Framework Directive to maintain or achieve seafloor integrity and good environmental status.Versión del editor4,411

    Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation

    Get PDF
    The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7th^{th} of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, pshort_{short}HV^{HV} OFF^{OFF} = 0.420.35+0.94^{-0.35+0.94}% with detector HV OFF and pshort_{short}HV^{HV} OFF^{OFF} < 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure

    Triple-GEM discharge probability studies at CHARM: Simulations and experimental results

    Get PDF
    The CMS muon system in the region with 2.03<|η|<2.82 is characterized by a very harsh radiation environment which can generate hit rates up to 144 kHz/cm2^{2} and an integrated charge of 8 C/cm2^{2} over ten years of operation. In order to increase the detector performance and acceptance for physics events including muons, a new muon station (ME0) has been proposed for installation in that region. The technology proposed is Triple—Gas Electron Multiplier (Triple-GEM), which has already been qualified for the operation in the CMS muon system. However, an additional set of studies focused on the discharge probability is necessary for the ME0 station, because of the large radiation environment mentioned above. A test was carried out in 2017 at the Cern High energy AcceleRator Mixed (CHARM) facility, with the aim of giving an estimation of the discharge probability of Triple-GEM detectors in a very intense radiation field environment, similar to the one of the CMS muon system. A dedicated standalone Geant4 simulation was performed simultaneously, to evaluate the behavior expected in the detector exposed to the CHARM field. The geometry of the detector has been carefully reproduced, as well as the background field present in the facility. This paper presents the results obtained from the Geant4 simulation, in terms of sensitivity of the detector to the CHARM environment, together with the analysis of the energy deposited in the gaps and of the processes developed inside the detector. The discharge probability test performed at CHARM will be presented, with a complete discussion of the results obtained, which turn out to be consistent with measurements performed by other groups

    Detector Control System for the GE1/1 slice test

    Get PDF
    Gas Electron Multiplier (GEM) technology, in particular triple-GEM, was selected for the upgrade of the CMS endcap muon system following several years of intense effort on R&D. The triple-GEM chambers (GE1/1) are being installed at station 1 during the second long shutdown with the goal of reducing the Level-1 muon trigger rate and improving the tracking performance in the harsh radiation environment foreseen in the future LHC operation [1]. A first installation of a demonstrator system started at the beginning of 2017: 10 triple-GEM detectors were installed in the CMS muon system with the aim of gaining operational experience and demonstrating the integration of the GE1/1 system into the trigger. In this context, a dedicated Detector Control System (DCS) has been developed, to control and monitor the detectors installed and integrating them into the CMS operation. This paper presents the slice test DCS, describing in detail the different parts of the system and their implementation

    Benchmarking LHC background particle simulation with the CMS triple-GEM detector

    Get PDF
    In 2018, a system of large-size triple-GEM demonstrator chambers was installed in the CMS experiment at CERN\u27s Large Hadron Collider (LHC). The demonstrator\u27s design mimicks that of the final detector, installed for Run-3. A successful Monte Carlo (MC) simulation of the collision-induced background hit rate in this system in proton-proton collisions at 13 TeV is presented. The MC predictions are compared to CMS measurements recorded at an instantaneous luminosity of 1.5 ×1034^{34} cm2^{-2} s1^{-1}. The simulation framework uses a combination of the FLUKA and GEANT4 packages. FLUKA simulates the radiation environment around the GE1/1 chambers. The particle flux by FLUKA covers energy spectra ranging from 1011^{-11} to 104^{4} MeV for neutrons, 103^{-3} to 104^{4} MeV for γ\u27s, 102^{-2} to 104^{4} MeV for e±^{±}, and 101^{-1} to 104^{4} MeV for charged hadrons. GEANT4 provides an estimate of the detector response (sensitivity) based on an accurate description of the detector geometry, the material composition, and the interaction of particles with the detector layers. The detector hit rate, as obtained from the simulation using FLUKA and GEANT4, is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties in the range 13.7-14.5%. This simulation framework can be used to obtain a reliable estimate of the background rates expected at the High Luminosity LHC

    CAD-based computer vision: the automatic generation of recognition stragtegies

    Get PDF
    Journal ArticleThree-dimensional model-based computer vision uses geometric models of objects and sensed data to recognize objects in a scene. Likewise, Computer Aided Design (CAD) systems are used to interactively generate three-dimensional models during these fields. Recently, the unification of CAD and vision systems has become the focus of research in the context of manufacturing automation. This paper explores the connection between CAD and computer vision. A method for the automatic generation of recognition strategies based on the geometric properties of shape has been devised and implemented. This uses a novel technique developed for quantifying the following properties of features which compose models used in computer vision: robustness, completeness, consistency, cost, and uniqueness. By utilizing this information, the automatic synthesis of a specialized recognition scheme, called a Strategy Tree, is accomplished. Strategy Trees describe, in a systematic and robust manner. the search process used for recognition and localization of particular objects in the given scene. They consist of selected features which satisfy system constraints and Corroborating Evidence Subtrees which are used in the formation of hypotheses. Verification techniques, used to substantiate or refute these hypotheses, are explored. Experiments utilizing 3-D data are presented

    Modeling the triple-GEM detector response to background particles for the CMS Experiment

    Get PDF
    An estimate of environmental background hit rate on triple-GEM chambers is performed using Monte Carlo (MC) simulation and compared to data taken by test chambers installed in the CMS experiment (GE1/1) during Run-2 at the Large Hadron Collider (LHC). The hit rate is measured using data collected with proton-proton collisions at 13 TeV and a luminosity of 1.5×1034\times10^{34} cm2^{-2} s1^{-1}. The simulation framework uses a combination of the FLUKA and Geant4 packages to obtain the hit rate. FLUKA provides the radiation environment around the GE1/1 chambers, which is comprised of the particle flux with momentum direction and energy spectra ranging from 101110^{-11} to 10410^{4} MeV for neutrons, 10310^{-3} to 10410^{4} MeV for γ\gamma's, 10210^{-2} to 10410^{4} MeV for e±e^{\pm}, and 10110^{-1} to 10410^{4} MeV for charged hadrons. Geant4 provides an estimate of detector response (sensitivity) based on an accurate description of detector geometry, material composition and interaction of particles with the various detector layers. The MC simulated hit rate is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties of 10-14.5%. This simulation framework can be used to obtain a reliable estimate of background rates expected at the High Luminosity LHC.Comment: 16 pages, 9 figures, 6 table

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker
    corecore