565 research outputs found

    What about sustainability? Investigating engineering students’ sustainability awareness and attitude

    Get PDF
    Engineers have a growing contribution towards attaining the Sustainable Development Goals (SDGs). Thus, graduate engineering students’ awareness and attitude will be crucial for dealing with these complex societal challenges. The purpose of this study is to investigate the sustainability awareness (SA) of engineering students from a developing country in comparison to that of those published from developed European countries. It also aims to explore engineering students’ attitudes and willingness to consider sustainability challenges as an important part of their future professional role. We have conducted a quantitative online survey (n=253) with the participation of engineering students from different majors at Bachelors and Masters levels. The data concerning students’ awareness and attitude underwent quantitative statistical analysis and was compared to that in the literature. The data was analyzed using SPSS to investigate differences and similarities between majors and validate its quality. The findings show good levels of SA and lower levels of knowledge in SDGs among engineering students compared to that presented by European studies. Thus, a gap in SDGs’ awareness exists between students from developed and developing countries. However, students’ positive attitudes and willingness to be involved in SDGs’ practices were remarkably high in understanding the leading role of engineers toward achieving the SDGs. Our results confirm engineering students’ motivation and strong positive attitude for resolving sustainability issues in developing countries despite challenging lifestyles. Our findings could be further used by engineering faculties in developing countries to minimize the gap and enhance future engineers’ contribution towards a more sustainable society

    Automation of flow injection gas diffusion-ion chromatography for the nanomolar determination of methylamines and ammonia in seawater and atmospheric samples

    Get PDF
    The automation and improved design and performance of Flow Injection Gas Diffusion-Ion Chromatography (FIGD-IC), a novel technique for the simultaneous analysis of trace ammonia (NH3) and methylamines (MAs) in aqueous media, is presented. Automated Flow Injection Gas Diffusion (FIGD) promotes the selective transmembrane diffusion of MAs and NH3 from aqueous sample under strongly alkaline (pH > 12, NaOH), chelated (EDTA) conditions into a recycled acidic acceptor stream. The acceptor is then injected onto an ion chromatograph where NH3 and the MAs are fully resolved as their cations and detected conductimetrically. A versatile PC interfaced control unit and data capture unit (DCU) are employed in series to direct the selonoid valve switching sequence, IC operation and collection of data. Automation, together with other modifications improved both linearily (R2 > 0.99 MAs 0-100 nM, NH3 0-1000 nM) and precision (<8%) of FIGD-IC at nanomolar concentrations, compared with the manual procedure. The system was successfully applied to the determination of MAs and NH3 in seawater and in trapped particulate and gaseous atmospheric samples during an oceanographic research cruise

    Distribution, sedimentation and fate of pigment biomarkers following thermal stratification in the western Alboran Sea

    Get PDF
    A spring investigation of the phytoplankton in the western Alboran Sea (Mediterranean) was undertaken using chlorophyll and carotenoid biomarkers to characterize the community in the water column and in drifting sediment traps set at 100 and 200 m. During 2 drifter experiments, calm and sunny conditions induced a progressive thermal stratification that reduced pigment sedimentation into deeper water and confined the phytoplankton to the surface layer, resulting in an increase in chlorophyll biomass. 19'-Hexanoyloxyfucoxanthin (prymnesiophytes) and chlorophyll b (chlorophytes, prasinophytes, prochlorophytes) were the major accessory pigments, while fucoxanthin, alloxanthin and peridinin indicated the presence of diatoms, cryptophytes and dinoflagellates, respectively. The proportional contribution of each algal group to the chlorophyll a (chl a) biomass, as derived from multiple regression analysis, revealed that prymnesiophytes, cryptophytes and the green algal group collectively accounted for at least 75% in the upper 100 m, emphasizing the importance of the nanophytoplankton. Phaeopigments, dominated by phaeophorbide a2, were the main pigments observed in sediment traps, although chl a, fucoxanthin and 19'-hexanoyloxyfucoxanthin were detected in smaller concentrations as well as traces of chlorophyll b (chl b). In deep water, fucoxanthin and 19'-hexanoyloxyfucoxanthin were the only accessory pigments present while total phaeopigment/chl a molar ratios >1 reflected the active transformation of fine phytogenic material at depth. High particulate organic carbon (POC)/chl a ratios (>100 in surface water; >1000 in deep water) suggested that phytoplankton was a relatively small component of the total carbon biomass down the water column. Using simple budget calculations, we determined that 58 to 65% of the chl a produced in the upper 100 m accumulated in the water column over both experiments. During Expt 1, 29% of the chl a sedimented out, mostly as phaeopigment, at 100 m (24%), and 6% was degraded to colourless residues in the water column. In contrast, only 12% of the chl a sedimented in Expt 2, while 20% was degraded to colourless residues

    Nitrous oxide cycling in the Arabian Sea

    Get PDF
    Depth profiles of dissolved nitrous oxide (N2O) were measured in the central and western Arabian Sea during four cruises in May and July–August 1995 and May–July 1997 as part of the German contribution to the Arabian Sea Process Study of the Joint Global Ocean Flux Study. The vertical distribution of N2O in the water column on a transect along 65°E showed a characteristic double-peak structure, indicating production of N2O associated with steep oxygen gradients at the top and bottom of the oxygen minimum zone. We propose a general scheme consisting of four ocean compartments to explain the N2O cycling as a result of nitrification and denitrification processes in the water column of the Arabian Sea. We observed a seasonal N2O accumulation at 600–800 m near the shelf break in the western Arabian Sea. We propose that, in the western Arabian Sea, N2O might also be formed during bacterial oxidation of organic matter by the reduction of IO3 − to I−, indicating that the biogeochemical cycling of N2O in the Arabian Sea during the SW monsoon might be more complex than previously thought. A compilation of sources and sinks of N2O in the Arabian Sea suggested that the N2O budget is reasonably balanced

    Enzymatic pre-treatment of microalgae cells for enhanced extraction of proteins

    Get PDF
    Crude proteins and pigments were extracted from different microalgae strains, both marine and freshwater. The effectiveness of enzymatic pre-treatment prior to protein extraction was evaluated and compared to conventional techniques, including ultrasonication and high-pressure water extraction. Enzymatic pre-treatment was chosen as it could be carried out at mild shear conditions and does not subject the proteins to high temperatures, as with the ultrasonication approach. Using enzymatic pre-treatment, the extracted proteins yields of all tested microalgae strains were approximately 0.7 mg per mg of dry cell weight. These values were comparable to those achieved using a commercial lytic kit. Ultrasonication was not very effective for proteins extraction from Chlorella sp., and the extracted proteins yields did not exceed 0.4 mg per mg of dry cell weight. For other strains, similar yields were achieved by both treatment methods. The time-course effect of enzymatic incubation on the proteins extraction efficiency was more evident using laccase compared to lysozyme, which suggested that the former enzyme has a slower rate of cell disruption. The crude extracted proteins were fractionated using an ion exchange resin and were analyzed by the electrophoresis technique. They were further tested for their antioxidant activity, the highest of which was about 60% from Nannochloropsis sp. The total phenolic contents in the selected strains were also determined, with Chlorella sp. showing the highest content reaching 17 mg/g. Lysozyme was also found to enhance the extraction of pigments, with Chlorella sp. showing the highest pigments contents of 16.02, 4.59 and 5.22 mg/g of chlorophyll a, chlorophyll b and total carotenoids, respectively

    Redfield stoichiometry in Arabian Sea subsurface waters

    Get PDF
    A linear inverse mixing model is applied to hydrographic, nutrient, and carbon data collected during Joint Global Ocean Flux Study and World Ocean Circulation Experiment cruises in 1995 to estimate the ΔCorg/ΔN/ΔP/ΔSi/-ΔO2 remineralization ratios within the Arabian Sea between 550 and 4500 m. The observed concentrations are separated into mixing fractions of source water masses and changes caused by remineralization processes, while the effect of denitrification is considered. In contrast to earlier investigations, diapycnal mixing, which plays an important role in dissolved matter fluxes in the Arabian Sea, is accounted for. The ratios are found to be variable with depth, especially in the upper 2000 m of the water column. We suppose that in general nutrients are released faster than carbon dioxide during remineralization. The Corg/ΔCinorg decrease from ∼4 ± 1 at 550 m to 2 ± 0.2 at 2000 m and 1.2 ± 0.3 at 4000 m, suggesting that the dissolution of calcium carbonate above the calcite lysocline is a potentially important process within the Arabian Sea

    The New Carotenoid Pigment Moraxanthin Is Associated with Toxic Microalgae

    Get PDF
    The new pigment “moraxanthin” was found in natural samples from a fish mortality site in the Inland Bays of Delaware, USA. Pure cultures of the species, tentatively named Chattonella cf. verruculosa, and natural samples contained this pigment as a dominant carotenoid. The pigment, obtained from a 10 L culture of C. cf. verruculosa, was isolated and harvested by HPLC and its structure determined from MS and 1D- and 2D-NMR. The data identified this pigment as a new acylated form of vaucheriaxanthin called moraxanthin after the berry like algal cell. Its presence in pure cultures and in natural bloom samples indicates that moraxanthin is specific to C. cf. verruculosa and can be used as a marker of its presence when HPLC is used to analyze natural blooms samples

    Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone

    Get PDF
    The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ
    corecore