1,427 research outputs found

    Motion correction in fMRI via registration of individual slices into an anatomical volume

    Full text link
    An automated retrospective image registration based on mutual information is adapted to a multislice functional magnetic resonance imaging (fMRI) acquisition protocol to provide accurate motion correction. Motion correction is performed by mapping each slice to an anatomic volume data set acquired in the same fMRI session to accommodate inter-slice head motion. Accuracy of the registration parameters was assessed by registration of simulated MR data of the known truth. The widely used rigid body volume registration approach based on stacked slices from the time series data may hinder statistical accuracy by introducing inaccurate assumptions of no motion between slices for multislice fMRI data. Improved sensitivity and specificity of the fMRI signal from mapping-each-slice-to-volume method is demonstrated in comparison with a stacked-slice correction method by examining functional data from two normal volunteers. The data presented in a standard anatomical coordinate system suggest the reliability of the mapping-each-slice-to-volume method to detect the activation signals consistent between the two subjects. Magn Reson Med 41:964–972, 1999. © 1999 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34927/1/16_ftp.pd

    Mapping of ion beam induced current changes in FinFETs

    Full text link
    We report on progress in ion placement into silicon devices with scanning probe alignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lever of the SFM tip collimate the argon beam to sizes of 1.6 um and 100 nm in diameter. Ion impacts upset the channel current due to formation of positive charges in the oxide areas. The induced changes in the source-drain current are recorded in dependence of the ion beam position in respect to the FinFET. Maps of local areas responding to the ion beam are obtained.Comment: IBMM 2008 conference proceedin

    A 2-D π–π dimer model system to investigate structure-charge transfer relationships in rubrene

    Get PDF
    © The Royal Society of Chemistry 2019Rubrene (5,6,11,12-tetraphenyltetracene) is undoubtedly one of the best performing organic charge transfer mediating materials, with experimentally determined mobilities up to 40 cm2 V−1 s−1. Consequently, there has been increasing interest by means of crystal engineering in trying to generate rubrene-based materials with analogous or even superior conducting properties. Often, experimental measurements are carried out in thin film architectures of these materials, where measured properties can be detrimentally impacted by device manufacture rather than intrinsic charge transfer properties of the material. The latter results in discarding potential good performers. To address these concerns, we report a two-dimensional model system that will allow researchers to predict charge transfer properties of their materials solely requiring the coordinates of the π–π stacking motifs. We envisaged this study to be of significant interest to the increasingly large community of materials scientists devoted to the realisation of improved organic charge mediating materials and particularly to those engaged in exploiting rubrene-based architectures.Peer reviewedFinal Accepted Versio

    Microwave amplification with nanomechanical resonators

    Full text link
    Sensitive measurement of electrical signals is at the heart of modern science and technology. According to quantum mechanics, any detector or amplifier is required to add a certain amount of noise to the signal, equaling at best the energy of quantum fluctuations. The quantum limit of added noise has nearly been reached with superconducting devices which take advantage of nonlinearities in Josephson junctions. Here, we introduce a new paradigm of amplification of microwave signals with the help of a mechanical oscillator. By relying on the radiation pressure force on a nanomechanical resonator, we provide an experimental demonstration and an analytical description of how the injection of microwaves induces coherent stimulated emission and signal amplification. This scheme, based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices, and, at the same time, has a high potential to reach quantum limited operation. With a measured signal amplification of 25 decibels and the addition of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave amplification is feasible in various applications involving integrated electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main text), 18 pages, 6 figures (supplementary information

    An initial event in insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein

    Get PDF
    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the NMR solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~ 6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone 15N-1H groups of the protein, suggesting the formation of a large complex. Analytical ultra centrifugation (AUC) studies of formation of N-βGRP:laminarin complex show that ligand-binding induces sel-fassociation of the protein:carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~ 102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to sub-micromolar concentrations. The structural model thus derived from the present studies for N-βGRP:laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple helical form of laminarin on the basis of an X-ray crystallographic structure of N-βGRP:laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements carried out with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of N-βGRP:laminarin macro complex and that a decreased stability is accompanied by a reduced activation of the proPO pathway. Increased β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of βGRP:β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway

    Revealing the respiratory system of the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae: Scolytinae) using micro-computed tomography

    Get PDF
    The coffee berry borer (Hypothenemus hampei) is the most economically important insect pest of coffee globally. Micro-computed tomography (micro-CT) was used to reconstruct the respiratory system of this species for the first time; this is the smallest insect (ca. 2 mm long) for which this has been done to date. Anatomical details of the spiracles and tracheal tubes are described, images presented, and new terms introduced. The total volume and the relationship between tracheal lumen diameter, length and volume are also presented. The total length of the tracheal tubes are seventy times the length of the entire animal. Videos and a 3D model for use with mobile devices are included as supplementary information; these could be useful for future research and for teaching insect anatomy to students and the public in general.This paper benefitted from the sub-award agreement S15192.01 between Kansas State University (KSU) and the University of Granada, as part of a USDANIFA Award 2014-70016-23028 to S.J. Brown (KSU), “Developing an Infrastructure and Product Test Pipeline to Deliver Novel Therapies for Citrus Greening Disease” (2015–2020)

    Diversification of importin-α isoforms in cellular trafficking and disease states.

    Get PDF
    The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases

    A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

    Get PDF
    J.Z. acknowledge the support from the National Nature Science Foundation of China (61571218, 61571216, 61301017, 61371034, 61101011), and the Ph.D. Programs Foundation of Ministry of Education of China (20120091110032, 20110091120052). Y. H. acknowledge the support from the UK EPSRC under the QUEST Programme Grant (EP/I034548/1)
    corecore